Probing the Structure and Dynamics of the [NH4]M(HCO2)3 Ferroelectric Phases: Dielectric Relaxation through Orientational Disorder

Thomas J. Hitchings , Helen M. Wickins , Lydia G. Burley , Silvia C. Capelli , Franz Demmel , Anthony E. Phillips , Paul Hodgkinson , Paul J. Saines

Chinese Journal of Chemistry ›› 2025, Vol. 43 ›› Issue (10) : 1190 -1198.

PDF
Chinese Journal of Chemistry ›› 2025, Vol. 43 ›› Issue (10) : 1190 -1198. DOI: 10.1002/cjoc.202401192
Concise Report

Probing the Structure and Dynamics of the [NH4]M(HCO2)3 Ferroelectric Phases: Dielectric Relaxation through Orientational Disorder

Author information +
History +
PDF

Abstract

Neutron diffraction studies of the low-temperature relaxor ferroelectric phases of [NH4]M(HCO2)3, where M = Mn2+ and Zn2+, show that a third of the NH4+ cations remain subtly structurally disordered to low temperature. All NH4+ cations within the channels are well separated from each other, with significant hydrogen bonds only with the anionic M(HCO2)3 framework. Complementary studies of the dynamics using 2H solid state NMR and quasielastic neutron scattering indicate significant rotational motion in both paraelectric and ferroelectric phases, which evolves gradually with increasing temperature with no abrupt change at the phase transition. Nudged elastic band calculations suggest that the activation barrier for flipping between “up” and “down” orientations of the NH4+ cations is low in the ferroelectric phase, with the NH4+ cations primarily interacting with the framework rather than neighbouring NH4+ cations. It is likely this motion that is responsible for scrambling the NH4+ cation orientation locally in the ferroelectric phase. We propose that this disorder, with the same basic motion active above and below the phase transition, induces the significant dielectric relaxation in these materials. This suggests that orientational disorder may be an effective substitution for compositional disorder commonly associated with relaxor ferroelectrics in molecular materials.

Keywords

Relaxor ferroelectric / Neutron diffraction / NMR spectroscopy / Quasielastic neutron scattering / Density functional theory / Metal-organic frameworks / Transition metals / Solid state structures

Cite this article

Download citation ▾
Thomas J. Hitchings, Helen M. Wickins, Lydia G. Burley, Silvia C. Capelli, Franz Demmel, Anthony E. Phillips, Paul Hodgkinson, Paul J. Saines. Probing the Structure and Dynamics of the [NH4]M(HCO2)3 Ferroelectric Phases: Dielectric Relaxation through Orientational Disorder. Chinese Journal of Chemistry, 2025, 43(10): 1190-1198 DOI:10.1002/cjoc.202401192

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Cohen, R. E. Origin of ferroelectricity in perovskite oxides. Nature 1992, 358, 136-138.

[2]

Haertling, G. H. Ferroelectric Ceramics: History and Technology. J. Am. Ceram. Soc. 1999, 82, 797-818.

[3]

Horiuchi, S.; Kumai, R.; Tokura, Y. Proton-displacive ferroelectricity in neutral cocrystals of anilic acids with phenazine. J. Mater. Chem. 2009, 19, 4421-4434.

[4]

Horiuchi, S.; Kumai, R.; Tokura, Y. Hydrogen-bonded donor-acceptor compounds for organic ferroelectric materials. Chem. Commun. 2007, 2321-2329.

[5]

Pramanick, A.; Osti, N. C.; Jalarvo, N.; Misture, S. T.; Diallo, S. O.; Mamontov, E.; Luo, Y.; Keum, J. K.; Littrell, K. Origin of dielectric relaxor behavior in PVDF-based copolymer and terpolymer films. AIP Adv. 2018, 8, 045204.

[6]

Cowley, R. A.; Gvasaliya, S. N.; Lushnikov, S. G.; Roessli, B.; Rotaru, G. M. Relaxing with relaxors: a review of relaxor ferroelectrics. Adv. Phys. 2011, 60, 229-327.

[7]

Wook, J.; Dittmer, R.; Acosta, M.; Zang, J.; Groh, C.; Sapper, E.; Wang, K.; Rödel, J. Giant electric-field-induced strains in lead-free ceramics for actuator applications-status and perspective. J. Electroceram. 2012, 29, 71-93.

[8]

Gadinski, M. R.; Li, Q.; Zhang, G.; Zhang, X.; Wang, Q. Understanding of relaxor ferroelectric behavior of poly(vinylidene fluoride-trifluoroethylene-chlorotrifluoroethylene) terpolymers. Macromolecules 2015, 48, 2731-2739.

[9]

Ahn, C. W.; Hong, C.-H.; Choi, B.-Y.; Kim, H.-P.; Han, H.-S.; Hwang, Y.; Jo, W.; Wang, K.; Li, J.-F.; Lee, J.-S.; Kim, I. W. A brief review on relaxor ferroelectrics and selected issues in lead-free relaxors. J. Korean Phys. Soc. 2016, 68, 1481-1494.

[10]

Egami, T. Local Structure of Ferroelectric Materials. Ann. Rev. Mater. Res. 2007, 37, 297-315.

[11]

Cross, L. E. Relaxor ferroelectrics: an overview. Ferroelectrics 1994, 151, 305-320.

[12]

Xu, G.-C.; Zhang, W.; Ma, X.-M.; Chen, Y.-H.; Zhang, L.; Cai, H.-L.; Wang, Z.-M.; Xiong, R.-G.; Gao, S. Coexistence of Magnetic and Electric Orderings in the Metal-Formate Frameworks of [NH4][M(HCOO)3]. J. Am. Chem. Soc. 2011, 133, 14948-14951.

[13]

Fu, D.-W.; Zhang, W.; Cai, H.-L.; Zhang, Y.; Ge, J.-Z.; Xiong, R.-G.; Huang, S. D.; Nakamura, T.; Fu, D.; Zhang, W.; Cai, H.; Zhang, Y.; Ge, J.; Xiong, R.; Huang, S. D.; Nakamura, T. A Multiferroic Perdeutero Metal-Organic Framework. Angew. Chem. Int. Ed. 2011, 50, 11947-11951.

[14]

Xu, G. C.; Ma, X. M.; Zhang, L.; Wang, Z. M.; Gao, S. Disorder-order ferroelectric transition in the metal formate framework of [NH4][Zn(HCOO)3]. J. Am. Chem. Soc. 2010, 132, 9588-9590.

[15]

Chen, S.; Shang, R.; Hu, K.-L.; Wang, Z.-M.; Gao, S. [NH2NH3 ][M(HCOO)3] (M = Mn2+, Zn2+, Co2+ and Mg2+): structural phase transitions, prominent dielectric anomalies and negative thermal expansion; magnetic ordering. Inorg. Chem. Front. 2014, 1, 83-98.

[16]

Shi, C.; Ma, J. J.; Jiang, J. Y.; Hua, M. M.; Xu, Q.; Yu, H.; Zhang, Y.; Ye, H. Y. Large Piezoelectric Response in Hybrid Rare-Earth Double Perovskite Relaxor Ferroelectrics. J. Am. Chem. Soc. 2020, 142, 9634-9641.

[17]

Shang, R.; Chen, S.; Hu, K.-L.; Wang, B.-W.; Wang, Z.-M.; Gao, S. A Variety of Phase-Transition Behaviors in a Niccolite Series of [NH3(CH2)4NH3][M(HCOO)3]2. Chem. Eur. J. 2016, 22, 6199-6203.

[18]

Berlie, A.; Terry, I.; Szablewski, M.; Telling, M.; Apperley, D.; Hodgkinson, P.; Zeller, D. A study of the dynamics and structure of the dielectric anomaly within the molecular solid TEA(TCNQ)2. Phys. Chem. Chem. Phys. 2022, 24, 7481-7492.

[19]

Xu, W.-J.; Kopyl, S.; Kholkin, A.; Rocha, J. Hybrid organic-inorganic perovskites: Polar properties and applications. Coord. Chem. Rev. 2019, 387, 398-414.

[20]

Shi, C.; Han, X.-B.; Zhang, W. Structural phase transition-associated dielectric transition and ferroelectricity in coordination compounds. Coord. Chem. Rev. 2019, 378, 561-576.

[21]

Bovill, S. M.; Saines, P. J. Structure and magnetic properties of the AB(HCO2)3 (A = Rb+ or Cs+, B = Mn2+, Co2+ or Ni2+) frameworks: probing the effect of size on the phase evolution of the ternary formates. CrystEngComm 2015, 17, 8319-8326.

[22]

Boström, H. L. B.; Senn, M. S.; Goodwin, A. L. Recipes for improper ferroelectricity in molecular perovskites. Nat. Commun. 2018, 9, 1-7.

[23]

Hitchings, T. J.; Wickins, H. M.; Peat, G. U. L.; Hodgkinson, P.; Srivastava, A. K.; Lu, T.; Liu, Y.; Piltz, R. O.; Demmel, F.; Phillips, A. E.; Saines, P. J. A new avenue to relaxor-like ferroelectric behaviour found by probing the structure and dynamics of [NH3NH2]Mg(HCO2)3. J. Mater. Chem. C 2023, 11, 9695-9706.

[24]

Mączka, M.; Pietraszko, A.; Macalik, B.; Hermanowicz, K. Structure, phonon properties; order-disorder transition in the metal formate framework of [NH4][Mg(HCOO)3]. Inorg. Chem. 2014, 53, 787-794.

[25]

Lawler, J. M. M.; Manuel, P.; Thompson, A. L.; Saines, P. J. Probing ferroic transitions in a multiferroic framework family: a neutron diffraction study of the ammonium transition metal formates. Dalton Trans. 2015, 44, 11613-11620.

[26]

Shannon, R. D. Revised Effective Ionic Radii and Systematic Studies of Interatomie Distances in Halides and Chaleogenides. Acta Cryst. 1976, 32, 751-767.

[27]

Navickas, M.; Giriūnas, L.; Kalendra, V.; Biktagirov, T.; Gerstmann, U.; Schmidt, W. G.; Mączka, M.; Pöppl, A.; Banys, J.; Šimėnas, M. Electron paramagnetic resonance study of ferroelectric phase transition and dynamic effects in a Mn2+ doped [NH4][Zn(HCOO)3] hybrid formate framework. Phys. Chem. Chem. Phys. 2020, 22, 8513-8521.

[28]

Xu, J.; Lucier, B. E. G.; Sinelnikov, R.; Terskikh, V. V.; Staroverov, V. N.; Huang, Y. Monitoring and Understanding the Paraelectric-Ferroelectric Phase Transition in the Metal-Organic Framework [NH4][M(HCOO)3] by Solid-State NMR Spectroscopy. Chem. Eur. J. 2015, 21, 14348-14361.

[29]

Vit, V.; Scaravonati, S.; Cugini, F.; Pontiroli, D.; Orlandi, F.; Solzi, M.; Riccò, M.; Righi, L. Proton-conduction under mild humid conditions in [NH4][M(HCOO)3] (M=Mn2+, Co2+) frameworks. J. Solid State Chem. 2024, 338, 124911.

[30]

Duncan, H. D.; Dove, M. T.; Keen, D. A.; Phillips, A. E. Local structure of the metal-organic perovskite dimethylammonium manganese(II) formate. Dalton Trans. 2016, 45, 4380-4391.

[31]

Chen, S.; Shang, R.; Hu, K.-L.; Wang, Z.-M.; Gao, S. [NH2NH3][M(HCOO)3] (M = Mn2+, Zn2+, Co2+ and Mg2+): structural phase transitions, prominent dielectric anomalies and negative thermal expansion; magnetic ordering. Inorg. Chem. Front. 2014, 1, 83-98.

[32]

Yildirim, A.; Krause, C.; Zorn, R.; Lohstroh, W.; Schneider, G. J.; Zamponi, M.; Holderer, O.; Frick, B.; Schönhals, A. Complex molecular dynamics of a symmetric model discotic liquid crystal revealed by broadband dielectric, thermal and neutron spectroscopy. Soft Matter 2020, 16, 2005-2016.

[33]

Khaneft, M.; Holderer, O.; Ivanova, O.; Lüke, W.; Kentzinger, E.; Appavou, M. S.; Zorn, R.; Lehnert, W. Structure and Proton Dynamics in Catalytic Layer of HT-PEFC. Fuel Cells 2016, 16, 406-413.

[34]

Willis, B. T. M.; Pryor, A. W. Thermal Vibrations in Crystallography, Cambridge University Press: Cambridge, 1975.

[35]

Bée, M. Quasielastic neutron scattering: Principles and applications in solid state chemistry, biology and materials science, Adam Hilger, IOP Publishing: Bristol and Philadelphia, 1989.

[36]

Leguy, A. M. A.; Frost, J. M.; McMahon, A. P.; Sakai, V. G.; Kockelmann, W.; Law, C.; Li, X.; Foglia, F.; Walsh, A.; O’Regan, B. C.; Nelson, J.; Cabral, J. T.; Barnes, P. R. F. The dynamics of methylammonium ions in hybrid organic-inorganic perovskite solar cells. Nat. Commun. 2015, 6, 7124.

[37]

Lavén, R.; Häussermann, U.; Perrichon, A.; Andersson, M. S.; Targama, M. S.; Demmel, F.; Karlsson, M. Diffusional Dynamics of Hydride Ions in the Layered Oxyhydride SrVO2H. Chem. Mater. 2021, 33, 2967-2975.

[38]

Meijer, B. E.; Cai, G.; Demmel, F.; Walker, H. C.; Phillips, A. E. Pressure dependence of rotational dynamics in barocaloric ammonium sulfate. Phys. Rev. B 2022, 106, 064302.

[39]

Verdal, N.; Hartman, M. R.; Jenkins, T.; Devries, D. J.; Rush, J. J.; Udovic, T. J. Reorientational dynamics of NaBH4 and KBH4. J. Phy. Chem. C 2010, 114, 10027-10033.

[40]

Parsonage, N. G.; Staveley, L. A. K. Disorder in Crystals, Clarendon Press: Oxford, 1978.

[41]

Hampson, M. R.; Evans, J. S. O.; Hodgkinson, P. Characterization of Oxygen Dynamics in ZrW2O8. J. Am. Chem. Soc. 2005, 127, 15175-15181.

[42]

Collings, I. E.; Bykov, M.; Bykova, E.; Tucker, M. G.; Petitgirard, S.; Hanfland, M.; Glazyrin, K.; Smaalen, S.; van, Goodwin, A. L.; Dubrovinsky, L.; Dubrovinskaia, N. Structural distortions in the high- pressure polar phases of ammonium metal formates. CrystEngComm 2016, 18, 8849-8857.

[43]

Burley, L. G. Exploring the \Structures and Dynamics of Amine- Templated Formate Frameworks, University of Kent, 2019.

[44]

Telling, M. T. F.; Andersen, K. H. Spectroscopic characteristics of the OSIRIS near-backscattering crystal analyser spectrometer on the ISIS pulsed neutron source. Phys. Chem. Chem. Phys. 2005, 7, 1255-1261.

[45]

Keen, D. A.; Gutmann, M. J.; Wilson, C. C. SXD - the single-crystal diffractometer at the ISIS spallation neutron source. J. Appl. Crystallogr. 2006, 39, 714-722.

[46]

Clark, S. J.; Segall, M. D.; Pickard, C. J.; Hasnip, P. J.; Probert, M. I. J.; Refson, K.; Payne, M. C. First principles methods using CASTEP. Z. Kristallogr. 2005, 220, 567-570.

[47]

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865-3868.

[48]

Tkatchenko, A.; Scheffler, M. Accurate Molecular Van Der Waals Interactions from Ground-State Electron Density and Free-Atom Reference Data. Phys. Rev. Lett. 2009, 102, 73005.

[49]

McNellis, E. R.; Meyer, J.; Reuter, K. Azobenzene at coinage metal surfaces: Role of dispersive van der Waals interactions. Phys. Rev. B 2009, 80, 205414.

RIGHTS & PERMISSIONS

2025 The Authors. Chinese Journal of Chemistry published by SIOC, CAS, Shanghai and Wiley-VCH GmbH

AI Summary AI Mindmap
PDF

15

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/