Catalytic Enantioselective Functionalization of Maleimides: An Update

Muriel Amatore , Damien Bonne , Thierry Constantieux , Jean Rodriguez

Chinese Journal of Chemistry ›› 2024, Vol. 42 ›› Issue (24) : 3605 -3622.

PDF
Chinese Journal of Chemistry ›› 2024, Vol. 42 ›› Issue (24) : 3605 -3622. DOI: 10.1002/cjoc.202400787
Recent Advances

Catalytic Enantioselective Functionalization of Maleimides: An Update

Author information +
History +
PDF

Abstract

Comprehensive Summary:Maleimide derivatives are well-established reactive intermediates also found in natural products, synthetic pharmaceuticals and functional polymers. Their specific reactivity found widespread applications in the field of bioconjugation and allowed for the development of highly selective functionalizations based on simple additions and cycloadditions with the possible control of central and C–N axial chirality. These multisite-reactive scaffolds have aroused a long-standing interest throughout the scientific community more particularly as powerful electrophilic partners and more recently as nucleophilic partners in some specific transformations. The persistent interest in these easily accessible synthetic platforms over the last decade has enabled the development of new enantioselective transformations and the major advancements in this field are presented in this review.

Keywords

Maleimides / Enantioselective catalysis / Additions / Cycloadditions / Heterocycles / Domino reactions

Cite this article

Download citation ▾
Muriel Amatore, Damien Bonne, Thierry Constantieux, Jean Rodriguez. Catalytic Enantioselective Functionalization of Maleimides: An Update. Chinese Journal of Chemistry, 2024, 42(24): 3605-3622 DOI:10.1002/cjoc.202400787

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Berson,J. A.; Swilder, R. A Synthesis of Maleimide. J. Am. Chem. Soc. 1954,76,2835–2836 and references cited therein.

[2]

(a) Lahore,S.; Aiwale, S. T.; Sardi,P.; Dallavalle,S. Synthesis of natural maleimides farinomaleins C–E and evaluation of their antifungal activity. Tetrahedron Lett. 2014,55,4196–4198;b) Lavrard, H.; Salvetti,B.; Mathieu,V.; Rodriguez, F.; Kiss,R.; Delfourne,E. Synthesis and in vitro Antiproliferative Activity of Amido and Amino Analogues of the Marine Alkaloid Isogranulatimide. ChemMedChem 2015,10,607–609;c) Vargas, D. F.; Kaufman,T. S.; Larghi,E. L. Total Synthesis of Aqabamycin G, a Nitrophenyl Indolylmaleimide Marine Alkaloid from Vibrio sp. WMBA. J. Org. Chem. 2022,87,13494–13500.

[3]

Cooney,L. N.; O’Shea, K. D.; Winfield,H. J.; Cahill,M. M.; Pierce, L. T.; McCarthy,F. O. Bisindolyl Maleimides and Indolylmaleimide Derivatives-A Review of Their Synthesis and Bioactivity. Pharmaceuticals 2023,16,1191.

[4]

(a) Dolci,E.; Froidevaux, V.; Joly–Duhamel,C.; Auvergne,R.; Boutevin, B.; Caillol,S. Maleimides as a Building Block for the Synthesis of High Performance Polymers. Polym. Rev. 2016,56,512–556;b) Mejia, G.; Wang,Y.; Huang,Z.; Shi,Q.; Zhang,Z. Maleimide Chemistry: Enabling the Precision Polymer Synthesis. Chin. J. Chem. 2021,39,3177–3187.

[5]

Li,P.; Vik,E. C.; Shimizu,K. D. N-Arylimide Molecular Balances: A Comprehensive Platform for Studying Aromatic Interactions in Solution. Acc. Chem. Res. 2020,53,2705–2714.

[6]

(a) Renault,K.; Fredy,J. W.; Renard,P.-Y. Sabot,C. Covalent Modification of Biomolecules through Maleimide-Based Labeling Strategies. Bioconjugate Chem. 2018,29,2497–2513;b) Ravasco,J. M. J. M.; Faustino,H.; Trindade, A.; Gois,P. M. P. Bioconjugation with Maleimides: A Useful Tool for Chemical Biology. Chem. Eur. J. 2019,25,43–59;c) Kang,M. S.; Kong,T. W. S.; Khoo,J. Y. X.; Loh,T.-P. Recent developments in chemical conjugation strategies targeting native amino acids in proteins and their applications in antibody-drug conjugates. Chem. Sci. 2021,12,13613–13647.

[7]

(a) Chauhan,P.; Kaur,J.; Chimni,S. S. Asymmetric Organocatalytic Addition Reactions of Maleimides: A Promising Approach Towards the Synthesis of Chiral Succinimide Derivatives. Chem. Asian J. 2013,8,328–346;b) Szőllősi, G.; Kozma,V. Design of Heterogeneous Organocatalyst for the Asymmetric Michael Addition of Aldehydes to Maleimides. ChemCatChem 2018,10,4362–4368;c) Vastakaite, G.; Grünenfelder,C. E.; Wennemers,H. Peptide-Catalyzed Stereoselective Conjugate Addition Reaction of Aldehydes to C-Substituted Maleimides. Chem. Eur. J. 2022,28,e202200215;d) Jana, B.; Mondal,M.; Halder,S.; Mahata, A.; Saurav,S.; Paladhi,S. Recent Advancement on Organocatalyzed Asymmetric Conjugate Addition Using Maleimide as a Potential Substrate. Asian J. Org. Chem. 2023,12,e202300387.

[8]

(a) Manoharan,R.; Jeganmohan, M. Alkylation, Annulation, and Alkenylation of Organic Molecules with Maleimides by Transition-Metal- Catalyzed C–H Bond Activation. Asian J. Org. Chem. 2019,8,1949–1969;b) Liu,S.-L.; Shi, Y.; Xue,C.; Zhang,L.; Song,M.-P. Maleimides in Directing-Group-Controlled Transition-Metal-Catalyzed Selective C–H Alkylation. Eur. J. Org. Chem. 2021,5862–5879;c) Liu, S.-L.; Ye,C.; Wang,X. Recent advances in Transition-metal-catalyzed directed C–H alkenylation with maleimides. Org. Biomol. Chem. 2022,20,4837–4845;d) Acharya, S. S.; Patra,S.; Maharana,R.; Dash,M.; Barad,L. M.; Parida, B. B. Recent advances in spirocyclization of maleimides via transition-metal catalyzed C–H activation. Org. Biomol. Chem. 2024,22,2916–2947.

[9]

(a) Arceo,E.; Melchiorre, P. Extending the Aminocatalytic HOMO- Raising Activation Strategy: Where Is the Limit? Angew. Chem. Int. Ed. 2012,51,5290–5292;b) Zhenhua,Y.; Jianan,Z.; Caiyue, W.; Yingxiang,G.; Shengyin,Z. Recent Advances in Functionalization of Double Bond Based on Maleimides. Chin. J. Org. Chem. 2019,39,2412–2427.

[10]

(a) Wei,Y.; Shi, M. Recent Advances in Organocatalytic Asymmetric Morita–Baylis–Hillman/aza-Morita–Baylis–Hillman Reactions. Chem. Rev. 2013,113,6659–6690;b) Pelissier,H. Recent developments in asymmetric organocatalytic Morita–Baylis–Hillman Reaction. Tetrahedron 2017,73,2831–2861.

[11]

(a) Biswas,A. Aromatic C–H bond functionalization through organocatalyzed asymmetric intermolecular aza-Friedel–Crafts reaction: a recent update. Beilstein J. Org. Chem. 2023,19,956–981;b) Ahmad,T.; Khan,S.; Ullah,N. Recent Advances in the Catalytic Asymmetric Friedel–Crafts Reactions of Indoles. ACS Omega 2022,7,35446–35485;c) Gaviña, D.; Escolano,M.; Torres,J.; Alzuet-Piña, G.; Sánchez-Roselló M.; delPozo,C. Organocatalytic Enantioselective Friedel–Crafts Alkylation Reactions of Pyrroles. Adv. Synth. Catal. 2021,363,3439–3470;d) Heravi, M.; Zadsirjan,V.; Heydari,M.; Masoumi, B. Organocatalyzed Asymmetric Friedel–Crafts Reactions: An Update. Chem. Rec. 2019,19,2236–2340;e) Montesinos-Magraner, M.; Vila,C.; Blay,G.; Pedro,J. Catalytic Enantioselective Friedel–Crafts Reactions of Naphthols and Electron-Rich Phenols. Synthesis 2016,48,2151–2164.

[12]

(a) Narayan,R.; Potowski, M.; Jia,Z.-J.; Antonchick,A. P.; Waldmann, H. Catalytic Enantioselective 1, 3-Dipolar Cycloadditions of Azomethine Ylides for Biology-Oriented Synthesis. Acc. Chem. Res. 2014,47,1296–1310;b) Zhu,Y.; Huang,Y. Organocatalyzed [3+3] annulations for the construction of heterocycles. Synthesis 2020,52,1181–1202;c) Wang,N.; Wu,Z.; Wang,J.; Ullah,N.; Lu, Y. Recent applications of asymmetric organocatalytic annulation reactions in natural product synthesis. Chem. Soc. Rev. 2021,50,9766–9793.

[13]

For a review, see: Zhao,Z.; Yue, J.; Ji,X.; Nian,M.; Kang,K.; Qiao,H.; Zheng, X. Research progress in biological activities of succinimide derivatives. Bioorg. Chem. 2021,108,104557.

[14]

(a) Shintani,R.; Ueyama, K.; Yamada,Y.; Hayashi,T. Chiral Norbornadienes as Efficient Ligands for the Rhodium-Catalyzed Asymmetric 1, 4-Addition of Arylboronic Acids to Fumaric and Maleic Compounds. Org. Lett. 2004,6,3425–3427;b) Shintani,R.; Duan, W.-L.; Nagano,T.; Okada,A.; Hayashi, T. Chiral Phosphine–Olefin Bidentate Ligands in Asymmetric Catalysis: Rhodium-Catalyzed Asymmetric 1, 4-Addition of Aryl Boronic Acids to Maleimides. Angew. Chem. Int. Ed. 2005,44,4611–4614;c) Piras,E.; Lang,F.; Ruegger, H.; Stein,D.; Worle,M.; Grutzmacher, H. Chiral Phosphane Alkenes (PALs): Simple Synthesis, Applications in Catalysis, and Functional Hemilability. Chem. Eur. J. 2006,12,5849–5858;d) Shintani, R.; Duan,W. L.; Hayashi,T. Rhodium-Catalyzed Asymmetric Construction of Quaternary Carbon Stereocenters: Ligand-Dependent Regiocontrol in the 1, 4-Addition to Substituted Maleimides. J. Am. Chem. Soc. 2006,128,5628–5629;e) Duan,W.-L.; Iwamura,H.; Shintani, R.; Hayashi,T. Chiral Phosphine–Olefin Ligands in the Rhodium-Catalyzed Asymmetric 1, 4-Addition Reactions. J. Am. Chem. Soc. 2007,129,2130–2138;f) Duan,W.-L.; Shintani, R.; Hayashi,T. Asymmetric construction of chiral C–N axes through rhodium-catalyzed 1, 4-addition. Tetrahedron 2007,63,8529–8536;g) Luo, Y.; Carnell,A. J. Chemoenzymatic Synthesis and Application of Bicyclo[2.2.2]octadiene Ligands: Increased Efficiency in Rhodium-Catalyzed Asymmetric Conjugate Additions by Electronic Tuning. Angew. Chem. Int. Ed. 2010,49,2750–2754;h) Thaler,T.; Guo,L.-N.; Steib,A. K.; Raducan,M.; Karaghiosoff, K.; Mayer,P.; Knochel,P. Sulfoxide–Alkene Hybrids: A New Class of Chiral Ligands for the Hayashi–Miyaura Reaction. Org. Lett. 2011,13,3182–3185;i) Berhal,F.; Wu,Z.; Genet,J.-P.; Ayad,T.; Ratovelomanana–Vidal, V. Rh-Catalyzed Asymmetric 1, 4-Addition of Arylboronic Acids to α β-Unsaturated Ketones with DIFLUORPHOS and SYNPHOS Analogues. J. Org. Chem. 2011,76,6320–6326;j) Le Boucher d’Herouville, F.; Millet,A.; Scalone,M.; Michelet, V. Room-Temperature Rh-Catalyzed Asymmetric 1, 4-Addition of Arylboronic Acids to Maleimides and Enones in the Presence of CF3-Substituted MeOBIPHEP Analogues. J. Org. Chem. 2011,76,6925–6930;k) Csizmadiova,J.; Meciarova,M.; Rakovsky, E.; Horvath,B.; Sebesta,R. [5]Ferrocenophanene–Phosphane Ligands for Enantioselective Rh-Catalyzed Conjugate Additions. Eur. J. Org. Chem. 2011,6110–6116.

[15]

Korenaga,T.; Ko,A.; Shimada,K. Low-Temperature Rh-Catalyzed Asymmetric 1, 4-Addition of Arylboronic Acids to α β-Unsaturated Carbonyl Compounds. J. Org. Chem. 2013,78,9975–9980.

[16]

Gopula,B.; Yang,S.-H.; Kuo,T.-S.; Hsieh, J.-C.; Wu,P.-Y.; Henschke,J. P.; Wu,H.-L. Direct Synthesis of Chiral 3-Arylsuccinimides by Rhodium-Catalyzed Enantioselective Conjugate Addition of Arylboronic Acids to Maleimides. Chem. Eur. J. 2015,21,11050–11055.

[17]

Lai,J.; Yang,J.; Yang,C.; Csuk, R.; Song,B.; Li,S. The first N-ligand assisted Pd catalyzed asymmetric synthesis of 3-arylsuccinimides as novel antifungal leads. Org. Chem. Front. 2022,9,183–189.

[18]

Kuroiwa,Y.; Tamura, M. Regio- and Enantioselective Synthesis of Succinimides Bearing All-Carbon Quaternary Centers Using a Chiral Phenanthroline-Palladium Calayst. Adv. Synth. Catal. 2024,366,1996–2002.

[19]

Zhang,J.; Zhang,Y.; Lin,L.; Yao, Q.; Liu,X.; Feng,X. Catalytic asymmetric desymmetrization of N-arylmaleimides: efficient construction of both atom chirality and axial chirality. Chem. Commun. 2015,51,10554–10557.

[20]

(a) For recent reviews on atropisomers bearing multiple chiral elements, see: Zhang,H.-H.; Li, T.-Z.; Liu,S.-J.; Shi,F. Catalytic Asymmetric Synthesis of Atropisomers Bearing Multiple Chirla Elements: An Emerging Field. Angew. Chem. Int. Ed. 2024,63,e202311053;b) Gaucherand,A.; Yen-Pon,E.; Domain, A.; Bourhis,A.; Rodriguez,J.; Bonne,D. Enantioselective Synthesis of Molecules with Multiple Stereogenic Elements. Chem. Soc. Rev. 2024, in press.

[21]

Han,Z.; Li,P.; Zhang,Z.; Chen, C.; Wang,Q.; Dong,X.-Q.; Zhang,X. Highly Enantioselective Synthesis of Chiral Succinimides via Rh/Bisphosphine-Thiourea-Catalyzed Asymmetric Hydrogenation. ACS Catal. 2016,6,6214–6218.

[22]

Wang,F.; Zhang,Z.; Chen,Y.; Ratovelomanana-Vidal, V.; Yu,P.; Chen,G.-Q.; Zhang,X. Stereodivergent synthesis of chiral succinimides via Rh-catalyzed asymmetric transfer hydrogenation. Nat. Commun. 2022,13,7794–7503.

[23]

Kumar,R.; Chandra, D.; Sharma,U. Pd-Catalyzed Atroposelective C–H Olefination Promoted by a Transient Directing Group. Adv. Synth. Catal. 2022,364,897–908.

[24]

Wang,J.; Chen,H.; Kong,L.; Wang, F.; Lan,Y.; Li,X. Enantioselective and Diastereoselective C–H Alkylation of Benzamides: Synergized Axial and Central Chirality via a Single Stereodetermining Step. ACS Catal. 2021,11,9151–9158.

[25]

Gu,X.-W.; Sun,Y.-L.; Xie,J.-L.; Wang, X.-B.; Xu,Z.; Yin,G.-W.; Li,L.; Yang,K.-F.; Xu, L.-W. Stereospecific Si–C coupling and remote control of axial chirality by enantioselective palladium-catalyzed hydrosilylation of maleimides. Nat. Commun. 2020,11,2904–2912.

[26]

Bai,X.-F.; Zhang,J.; Xia,C.-G.; Xu, J.-X.; Xu,L.-W. N-tert-Butanesulfinyl imine and aromatic tertiary amide derived non-biaryl atropisomers as chiral ligands for silver-catalyzed endo-selective [3 + 2] cycloaddition of azomethine ylides with maleimides. Tetrahedron 2016,72,2690–2699.

[27]

Wu,Y.; Xu,B.; Liu,B.; Zhang, Z.-M.; Liu,Y. A new trifluoromethylated sulfonamide phosphine ligand for Ag(I)-catalyzed enantioselective [3 + 2] cycloaddition of azomethine ylides. Org. Biomol. Chem. 2019,17,1395–1401.

[28]

Liu,H.-C.; Tao,H.-Y.; Cong,H.; Wang, C.-J. Silver(I)-Catalyzed Atroposelective Desymmetrization of N-Arylmaleimide via 1, 3-Dipolar Cycloaddition of Azomethine Ylides: Access to Octahydropyrrolo[3, 4-c]pyrrole Derivatives. J. Org. Chem. 2016,81,3752–3760.

[29]

Kumar,S. V.; Guiry,P. J. Zinc-Catalyzed Enantioselective [3 + 2] Cycloaddition of Azomethine Ylides Using Planar Chiral [2.2]Paracyclophane-Imidazoline N, O-ligands. Angew. Chem. Int. Ed. 2022,61,e202205516.

[30]

Zhang,S.; Luo,Z.-H.; Wang,W.-T.; Qian, L.; Liao,J.-Y. Simultaneous Construction of C–N Axial and Central Chirality via Silver-Catalyzed Desymmetrizative [3 + 2] Cycloaddition of Prochiral N-Aryl Maleimides with Activated Isocyanides. Org. Lett. 2022,24,4645–4649.

[31]

Wang,W.-T.; Zhang,S.; Lin,W.; Luo, Z.-H.; Hu,D.; Huang,F.; Bai,R.; Lan,Y.; Qian, L.; Liao,J.-Y. Catalytic stereodivergent and simultaneous construction of axial and point chirality. Org. Chem. Front. 2024,11,3308–3319.

[32]

Yuan,W.-K.; Shi,B.-F. Synthesis of Chiral Spirolactams via Sequential C–H Olefination/Asymmetric [4 + 1] Spirocyclization under a Simple CoII/Chiral Spiro Phosphoric Acid Binary System. Angew. Chem. Int. Ed. 2021,60,23187–23192.

[33]

von Münchow,T.; Dana, S.; Xu,Y.; Yuan,B.; Ackermann, L. Enantioselective electrochemical cobalt-catalyzed aryl C-H activation reactions. Science 2023,379,1036–1042.

[34]

Avila,A.; Chinchilla, R.; Nájera,C. Enantioselective Michael addition of α α-disubstituted aldehydes to maleimides organocatalyzed by chiral primary amine-guanidines. Tetrahedron: Asymmetry 2012,23,1625–1627.

[35]

Vízcaíno-Milla,P.; Sansano,J. M.; Nájera, C.; Fiser,B.; Gómez-Bengoa,E. Primary Amine–2-Aminopyrimidine Chiral Organocatalysts for the Enantioselective Conjugate Addition of Branched Aldehydes to Maleimides. Synthesis 2015,47,2199–2206.

[36]

Torregrosa-Chinillach,A.; Moragues,A.; Pérez-Furundarena, H.; Chinchilla,R.; Gómez-Bengoa,E.; Guillena, G. Enantioselective Michael Addition of Aldehydes to Maleimides Organocatalyzed by a Chiral Primary Amine-Salicylamide. Molecules 2018,23,3299.

[37]

Shim,J. H.; Cheun,S. H.; Kim,H. S.; Ha, D.-C. Enantioselective Organocatalyzed Michael Addition of Isobutyraldehyde to Maleimides in Aqueous Media. Molecules 2022,27,2759.

[38]

Kozma,V.; Szőllősi, G. Enantioselective Michael addition of aldehydes to maleimides catalysed by surface-adsorbed natural amino acids. Catal. Sci. Technol. 2022,12,4709–4726.

[39]

Grünenfelder,C. E.; Kisunzu,J. K.; Wennemers, H. Peptide-Catalyzed Stereoselective Conjugate Addition Reactions of Aldehydes to Maleimide. Angew. Chem. Int. Ed. 2016,55,8571–8574.

[40]

For utilization of dendrimeric dipeptides or intercalated into hydrocalcite, see: (a) Landeros,J. M.; Suchy,L.; Ávila-Ortiz, G.; Maulide,N.; Juaristi,E. Dendrimeric α β-dipeptidic conjugates as organocatalyts in the asymmetric Michael addition reaction of isobutyraldehyde to N-phenylmaleimides. Monatsh. Chem. 2019,150,777–788;b) Landeros, J. M.; Cruz-Hernández,C.; Juaristi,E. α-Amino Acids and α β-Dipeptides Intrecalated into Hydrotalcite: Efficient Catalyst in the Asymmetric Michael Addition Reaction of Aldehydes to N-Substituted Maleimides. Eur. J. Org. Chem. 2021,5117–5126.

[41]

Du,Z.-H.; Qin,W.-J.; Tao,B.-X.; Yuan, M.; Da,C.-S. N-Primary-amine tetrapeptide-catalyzed highly asymmetric Michael addition of aliphatic aldehydes to maleimides. Org. Biomol. Chem. 2020,18,6899–6904.

[42]

Muramulla,S.; Ma,J.-A.; Zhao,J. C.-G. Michael Addition of Ketones and Aldehydes to Maleimides Catalyzed by Modularly Designed Organocatalysts. Adv. Synth. Catal. 2013,355,1260–1264.

[43]

For a personal account, see: Di Iorio,N.; Crotti,S.; Bencivenni, G. Organocatalytic Desymmetrization Reactions for the Synthesis of Axially Chiral Compounds. Chem. Rec. 2019,19,2095.

[44]

Di Iorio,N.; Righi,P.; Mazzanti,A.; Mancinelli, M.; Ciogli,A.; Bencivenni,G. Remote Control of Axial Chirality: Aminocatalytic Desymmetrization of N-Arylmaleimides via Vinylogous Michael Addition. J. Am. Chem. Soc. 2014,136,10250–10253.

[45]

Di Iorio,N.; Soprani, L.; Crotti,S.; Marotta,E.; Mazzanti, A.; Righi,P.; Bencivenni,G. Michael Addition of Oxindoles to N-(2-tert-Butylphenyl)maleimides: Efficient Desymmetrization for the Synthesis of Atropisomeric Succinimides with Quaternary and Tertiary Stereocenters. Synthesis 2017,49,1519–1530.

[46]

(a) Di Iorio,N.; Champavert, F.; Erice,A.; Righi,P.; Mazzanti, A.; Bencivenni,G. Targeting remote axial chirality control of N-(2-tert- butylphenyl) succinimides by means of Michael addition type reactions. Tetrahedron 2016,72,5191–5201;b) For a related Michael addition of deconjugated butenolides, see: Guo,Y.-L.; Jia,L.-N.; Qi, L.-W.; Zhou,J.; Tian,F.; Xu,Y.; Wang,L.-X. Highly enantioselective direct vinylogous Michael addition of γ-substituted deconjugated butenolides to maleimides catalyzed by chiral squaramides. RSC Adv. 2013,3,16973–16976.

[47]

Kozma,V; Szőllősi, G. Conjugate addition of 1, 3-dicarbonyl compounds to maleimides using bifunctional primary amine–(thio)phosphoramide organocatalysts. Mol. Catal. 2022,518,112089.

[48]

Gulevich,A. V.; Zhdanko, A. G.; Orru,R. V. A.; Nenajdenko,V. G. Isocyanoacetate Derivatives: Synthesis, Reactivity, and Application. Chem. Rev. 2010,110,5235–5331.

[49]

Bai,J.-F.; Wang,L.-L.; Peng,L.; Guo, Y.-L.; Jia,L.-N.; Tian,F.; He,G.-Y.; Xu,X.-Y.; Wang, L.-X. Asymmetric Michael Addition of α-Substituted Isocyanoacetates with Maleimides Catalyzed by Chiral Tertiary Amine Thiourea. J. Org. Chem. 2012,77,2947–2953.

[50]

Geng,J.; Wei,X.; He,B.; Hao, Y.; Qu,J.; Wang,B. Desymmetrization of Prochiral N-Pyrazolyl Maleimides via Organocatalyzed Asymmetric Michael Addition with Pyrazolones: Construction of tri-N-Heterocyclic Scaffolds Bearing Both Central and Axial Chirality. Molecules 2023,28,4279–4294.

[51]

Wang,X.; Yang,P.; Zhang,Y.; Tang, C.-Z.; Tian,F.; Peng,L. Wang,L.-X. Isatin N, N’-cyclic azomethine imine 1, 3-dipole and abnormal [3 + 2]-cycloaddition with maleimides in the presence of 1, 4-Diazabicyclo[2.2.2]octane. Org. Lett. 2017,19,646–649.

[52]

Zhong,F.; Chen,G.-Y.; Han,X.; Yao, W.; Lu,Y. Asymmetric Construction of Functionalized Bicyclic Imides via [3+2] Annulation of MBH Carbonates Catalyzed by Dipeptide-Based Phosphines. Org. Lett. 2012,14,3764–3767.

[53]

Tu,A.; Hu,H.; Du,T.; Zhong, W. Asymmetric [3+2]-Cycloaddition of Morita–Baylis–Hillman Carbonates with Maleimides Catalyzed by Chiral Ferrocenylphosphines. Synth. Commun. 2014,44,3392–3399.

[54]

Hu,H.; Yu,S.; Zhu,L.; Zhou, L.; Zhong,W. Chiral bifunctional ferrocenylphosphine catalyzed highly enantioselective [3+2] cycloaddition reaction. Org. Biomol. Chem. 2016,14,752–760.

[55]

Wang,H.; Wei,Y.; Li,Y.; Long, S.; Sun,L.-J.; Li,S. Lin,Y.-W. Phosphine-Catalyzed Atroposelective Formal [3+2] Cycloaddition Desymmetrization of N-Arylmaleimides. Org. Lett. 2022,24,6494–6498.

[56]

Hou,J.; Hao,W.; Chen,Y.; Wang, Z.; Yao,W. Phosphine-Catalyzed Stereospecific and Enantioselective Desymmetrizative [3+2] Cycloaddition of MBH Carbonates and N-(2-tert-Butylphenyl)maleimides. J. Org. Chem. 2024,89,9068–9077.

[57]

Zhao,Q.; Han,X.; Wei,Y.; Shi, M.; Lu,Y. Asymmetric [3+2] annulation of allenes with maleimides catalyzed by dipeptide-derived phosphines: facile creation of functionalized bicyclic cyclopentenes containing two tertiary stereogenic centers. Chem. Commun. 2012,48,970–972.

[58]

Zhao,H.-W.; Yang,Z.; Meng,W.; Tian, T.; Li,B.; Song,X.-Q.; Chen,X.-Q.; Pang,H.-L. Diastereo- and Enantioselective Synthesis of Chiral Pyrrolidine-Fused Spirooxindoles via Organocatalytic [3+2] 1, 3-Dipolar Cycloaddition of Azomethine Ylides with Maleimides. Adv. Synth. Catal. 2015,357,2492–2502.

[59]

Eudier,F.; Righi,P.; Mazzanti,A.; Ciogli, A.; Bencivenni,G. Organocatalytic Atroposelective Formal Diels–Alder Desymmetrization of N-Arylmaleimides. Org. Lett. 2015,17,1728–1731.

[60]

Akhtar,M. S.; Lee,Y. R. Organocatalyzed Synthesis of Highly Functionalized Phthalimides via Diels–Alder Reaction Employing Two Dienophiles. J. Org. Chem. 2020,85,15129–15138.

[61]

Mondal,S.; Mukherjee, S. Catalytic Generation of Remote C–N Axial Chirality through Atroposelective de novo Arene Construction. Org. Lett. 2022,24,8300–8304.

[62]

Nishikawa,Y.; Nakano, S.; Tahira,Y.; Terazawa,K.; Yamazaki, K.; Kitamura,C.; Hara,O. Chiral Pyridinium Phosphoramide as a Dual Brønsted Acid Catalyst for Enantioselective Diels–Alder Reaction. Org. Lett. 2016,18,2004–2007.

[63]

Barday,M.; Rodrigues, J.; Bouillac,P.; Rodriguez,J.; Amatore, M.; Constantieux,T. N-Heterocyclic Carbene Control over Multiple Stereogenicities: Atroposelective Synthesis of Axially Chiral Phthalimides. Adv. Synth. Catal. 2023,365,148–155.

[64]

Qiu,S.; Lee,R.; Zhu,B.; Coote, M. L.; Zhao,X.; Jiang,Z. Highly Enantio- and Diastereoselective [4 + 2] Cycloaddition of 5H-oxazol-4-ones with N-Maleimides. J. Org. Chem. 2016,81,8061–8069.

[65]

(a) Enders,D.; Breuer, K.; Runsink,J.; Teles,J. H. The first asymmetric intramolecular Stetter reaction. Preliminary communication. Helv. Chim. Acta 1996,79,1899–1902;b) Kerr,M. S.: Read de Alaniz,J.; Rovis, T. A Highly Enantioselective Catalytic Intramolecular Stetter Reaction. J. Am. Chem. Soc. 2002,124,10298–10299;c) For a review, see: Yetra,S. R.; Patra, A.; Biju,A. T. Recent Advances in the N-Heterocyclic Carbene (NHC)-Organocatalyzed Stetter Reaction and Related Chemistry. Synthesis 2015,47,1357–1378.

[66]

Lathrop,S. P.; Rovis,T. A photoisomerization-coupled asymmetric Stetter reaction: application to the total synthesis of three diastereomers of (–)-cephalimysin A. Chem. Sci. 2013,4,1668–1673.

[67]

Barik,S.; Shee,S.; Das,S.; Gonnade, R. G.; Jindal,G.; Mukherjee,S.; Biju,A. T. NHC-Catalyzed Desymmetrization of N-Aryl Maleimides Leading to the Atroposelective Synthesis of N-Aryl Succinimides. Angew. Chem. Int. Ed. 2021,60,12264–12268.

[68]

Chauhan,P.; Chimni, S. S. Organocatalytic Enantioselective Morita–Baylis–Hillman Reaction of Maleimides with Isatins. Asian J. Org. Chem. 2013,2,586–592.

[69]

Kumar,A.; Sharma, V.; Kaur,J.; Kumar,N.; Chimni, S. S. Maleimide as an efficient nucleophilic partner in the aza-Morita–Baylis–Hillman reaction: synthesis of chiral 3-substituted-3-aminooxindoles. Org. Biomol. Chem. 2015,13,5629–5635.

[70]

He,Q.; Zhan,G.; Du,W.; Chen, Y.-C. Application of 7-azaisatins in enantioselective Morita–Baylis–Hillman reaction. Beilstein J. Org. Chem. 2016,12,309–313.

[71]

Sakai,N.; Kawashima, K.; Kajitani,M.; Mori,S.; Oriyama, T. Combined Computational and Experimental Studies on the Asymmetric Michael Addition of a-Aminomaleimides to β-nitrostyrenes Using an Organocatalyst Derived from Cinchona Alkaloid. Org. Lett. 2021,23,5714–5718.

[72]

Mu,H.; Jin,Y.; Zhao,R.; Wang, L.; Jin,Y. Organocatalytic Enantioselective Michael Reaction of Aminomaleimides with Nitroolefins Catalyzed by Takemoto’s Catalyst. Molecules 2022,27,7787–7797.

[73]

Suzuki,S.; Kimura, K.; Han,W.; Oriyama,T. Organocatalyzed asymmetric Mannich reaction of α-aminomaleimides with N-Boc imines. Bull. Chem. Soc. Japan 2024,97,uoae051.

[74]

Chu,Y.; Wu,M.; Hu,F.; Zhou, P.; Cao,Z.; Hui,X.-P. N-Heterocyclic Carbene-Catalyzed Atroposelective Synthesis of Pyrrolo[3, 4-b]pyridines with Configurationally Stable C-N Axial Chirality. Org. Lett. 2022,24,3884–3889.

[75]

Li,Y.; Duan,X.-Y.; Wei,Y.; Li, J.; Ren,X.; Qi,J. N-Heterocyclic carbene-catalyzed Atroposelective Annulation for Access to Pyrrolo[3, 4-b]pyridines Derivatives with C-N Axial Chirality. Asian J. Org. Chem. 2022,11,e202200383.

[76]

Barik,S.; Chandra, R.; Das,C.; Balanna,K.; Biju,A. T. Kinetic Resolution Approach to the Synthesis of C–N Axially Chiral N-Aryl Aminomaleimides via NHC-Catalyzed [3+3] Annulation. Org. Lett. 2022,24,5456–5461.

[77]

Yang,Y.; Ren,H.-X.; Chen,F.; Zhang, Z.-B.; Zou,Y.; Chen,C.; Song,X.-J.; Tian,F.; Peng, L.; Wang,L.-X. Organocatalytic Asymmetric Annulation between Hydroxymaleimides and Nitrosoarenes: Stereoselective Preparation of Chiral Quaternary N-Hydroxyindoles. Org. Lett. 2017,19,2805–2808.

[78]

Zhang,J.; Liu,M.; Huang,M.; Liu, H.; Yan,Y.; Zhang,X. Enantioselective [3+2] annulation of 3-hydroxymaleimides with quinone monoimines. Org. Chem. Front. 2021,8,2268–2273.

[79]

Xiang,M.; Li,C.-Y.; Zhang,J.; Zou, Y.; Huang,Z.-C.; Li,W.-S.; Wang,Y.; Tian,F.; Wang, L.-X. Organocatalyst-promoted Diastereoselective and Enantioselective Michael Addition/Hemiketalization Reaction between Hydroxymaleimide and Quinone. Asian J. Org. Chem. 2021,10,1713–1717.

[80]

Zhang,J.; Liu,M.; Huang,M.; Li, W.; Zhang,X. Enantioselective Dearomative [3+2] Annulation of 3-hydroxymaleimides with Azonaphthalenes. ChemistrySelect 2021,6,4556–4561.

[81]

Xiang,M.; Li,C.-Y.; Zhang,J.; Zou, Y.; Li,W.-S.; Tian,F.; Wang,L.-X. Organocatalytic and enantioselective [4+2] cyclization between hydroxymaleimides and ortho-hydroxyphenyl para-quinone methide- selective preparation of chiral hemiketals. Chem. Commun. 2020,56,14825–14828.

[82]

Xiang,M.; Li,C.-Y.; Song,X.-J.; Zou, Y.,Huang,Z.-C.; Li,X.; Tian,F.; Wan,W.-J.; Wang, L.-X. Organocatalytic enantioselective Diels-Alder reaction between hydroxymaleimides and in situ generated nitrosoalkenes for direct preparation of chiral hemiketals with 1, 2-oxazine skeleton. Org. Chem. Front. 2021,8,6215–6219.

[83]

Xie,D.-H.; Niu,C.; Du,D.-M. Enantioselective Michael/Hemiketalization Cascade Reactions between Hydroxymaleimides and 2-Hydroxynitrostyrenes for the construction of Chiral Chroman- Fused Pyrrolidinediones. Molecules 2022,27,5081.

[84]

During the evaluation process two new contributions were published involving maleimides as electrophilic partners either in an organocatalytic formal (4+2) cycloaddition or a metal catalyzed (3+2) spirocycloaddition: (a) Ren,P.; Zhao, Q.; Xu,K.; Zhu,T. Enantioselective N-Heterocyclic Carbene-Catalyzed Hauser-Kraus Annulations for the Construction of C–N Axially Chiral Phthalimide Derivatives. ACS Catal. 2024,14,13195–13201; (b) Luo,Q.; Mao, T.; Luo,Y.; Zhang,Y.; Wang,F.; Dong,S.; Feng, X. Enantioselective Synthesis of Spiro[cyclopentane-1, 3’-oxindole] Scaffolds with Five Consecutive Stereocenters. Org. Lett. 2024,26,6402–6406.

RIGHTS & PERMISSIONS

2024 The Authors. Chinese Journal of Chemistry published by SIOC, CAS, Shanghai and Wiley-VCH GmbH

AI Summary AI Mindmap
PDF

585

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/