Functionalization of Boranes through Thiol/Oxygen Catalysis

Hongyi Tao , Hairong Lyu

Chinese Journal of Chemistry ›› 2024, Vol. 42 ›› Issue (22) : 2804 -2810.

PDF
Chinese Journal of Chemistry ›› 2024, Vol. 42 ›› Issue (22) : 2804 -2810. DOI: 10.1002/cjoc.202400494
Concise Report

Functionalization of Boranes through Thiol/Oxygen Catalysis

Author information +
History +
PDF

Abstract

A greener and more convenient alternative to traditional methods for the generation of thiyl radical as hydrogen atom transfer (HAT) catalyst is developed, using molecular oxygen to oxidize thiol without the need for chemical initiators or light irradiation. The thiol/oxygen catalysis enables selective and efficient difunctionalization of borane.

Keywords

Boranes / Thiyl radical / Oxygen / Borane difunctionalization / Synthetic methods / Green chemistry

Cite this article

Download citation ▾
Hongyi Tao, Hairong Lyu. Functionalization of Boranes through Thiol/Oxygen Catalysis. Chinese Journal of Chemistry, 2024, 42(22): 2804-2810 DOI:10.1002/cjoc.202400494

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Denes, F.; Pichowicz, M.; Povie, G.; Renaud, P. Thiyl radicals in organic synthesis. Chem. Rev. 2014,114,2587–2693.

[2]

Scott, K. A.; Njardarson, J. T. Analysis of US FDA-Approved Drugs Containing Sulfur Atoms. Top. Curr. Chem. 2018,376,5.

[3]

Bao, X.; Yu, W.; Wang, G. Thiols as Powerful Atom Transfer Catalyst: Opportunities in Photoredox-Mediated Reactions. Adv. Synth. Catal. 2023,365,2299–2309.

[4]

Lynch, D. M.; Scanlan, E. M. Thiyl Radicals: Versatile Reactive Intermediates for Cyclization of Unsaturated Substrates. Molecules 2020,25,3094.

[5]

Patehebieke, Y. An overview on disulfide-catalyzed and -cocatalyzed photoreactions. Beilstein J. Org. Chem. 2020,16,1418–1435.

[6]

Breder, A.; Depken, C. Light-Driven Single-Electron Transfer Processes as an Enabling Principle in Sulfur and Selenium Multicatalysis. Angew. Chem. Int. Ed. 2019,58,17130–17147.

[7]

Li, G.; Huang, G.; Sun, R.; Curran, D. P.; Dai, W. Regioselective Radical Borylation of alpha, beta-Unsaturated Esters and Related Compounds by Visible Light Irradiation with an Organic Photocatalyst. Org. Lett. 2021,23,4353–4357.

[8]

Li, H.; Liu, Y.; Chiba, S. Leveraging of Sulfur Anions in Photoinduced Molecular Transformations. JACS Au 2021,1,2121–2129.

[9]

Sun, P.; Yang, D.; Wei, W.; Jiang, L.; Wang, Y.; Dai, T.; Wang, H. DMSO-promoted regioselective synthesis of sulfenylated pyrazoles via a radical pathway. Org. Chem. Front. 2017,4,1367–1371.

[10]

Patai, S. The Chemistry of Functional Groups – The Chemistry of the Thiol Group,John Wiley & Sons,1974.

[11]

Ruano, J. L. G.; Parra, A.; Alemán, J. Efficient synthesis of disulfides by air oxidation of thiols under sonication. Green Chem. 2008,10,706–711.

[12]

Xiong, F.; Zuo, Y.; Song, Y.; Zhang, L.; Zhang, X.; Xu, S.; Ren, Y. Synthesis of ortho-Phenolic Sulfilimines via an Intermolecular Sulfur Atom Transfer Cascade Reaction. Org. Lett. 2020,22,3799–3803.

[13]

Wan, J. P.; Zhong, S.; Xie, L.; Cao, X.; Liu, Y.; Wei, L. KIO3-Catalyzed Aerobic Cross-Coupling Reactions of Enaminones and Thiophenols: Synthesis of Polyfunctionalized Alkenes by Metal-Free C-H Sulfenylation. Org. Lett. 2016,18,584–587.

[14]

Ueng, S. H.; Solovyev, A.; Yuan, X.; Geib, S. J.; Fensterbank, L.; Lacôte, E.; Malacria, M.; Newcomb, M.; Walton, J. C.; Curran, D. P. N-heterocyclic carbene boryl radicals: A new class of boron-centered radical. J. Am. Chem. Soc. 2009,131,11256–11262.

[15]

Fava, A.; Reichenbach, G.; Peron, U. Kinetics of the thiol-disulfide exchange. II. Oxygen-promoted free-radical exchange between aromatic thiols and disulfides. J. Am. Chem. Soc. 1967,89,6696–6700.

[16]

Sahoo, H.; Singh, S.; Baidya, M. Radical Cascade Reaction of Aryl Alkynoates at Room Temperature: Synthesis of Fully Substituted α β-Unsaturated Acids with Chalcogen Functionality. Org. Lett. 2018,20,3678–3681.

[17]

Chen, Q.; Yu, G.; Wang, X.; Ou, Y.; Huo, Y. Catalyst-free direct C(sp3)-H sulfenylation of xanthene derivatives using air as the oxidant. Green Chem. 2019,21,798–802.

[18]

Choudhuri, K.; Mandal, A.; Mal, P. Aerial dioxygen activation vs. thiol-ene click reaction within a system. Chem. Comm. 2018,54,3759–3762.

[19]

Surendra, K.; Krishnaveni, N. S.; Sridhar, R.; Rao, K. R. Synthesis of β-Hydroxysulfides from Alkenes under Supramolecular Catalysis in the Presence of β-Cyclodextrin in Water. J. Org. Chem. 2006,71,5819–5821.

[20]

Wang, H.; Lu, Q.; Qian, C.; Liu, C.; Liu, W.; Chen, K.; Lei, A. Solvent-Enabled Radical Selectivities: Controlled Syntheses of Sulfoxides and Sulfides. Angew. Chem. Int. Ed. 2016,55,1094–1097.

[21]

Huo, C.; Wang, Y.; Yuan, Y.; Chen, F.; Tang, J. Auto-oxidative hydroxysulfenylation of alkenes. Chem. Commun. 2016,52,7233–7236.

[22]

Denisov, E. T.; Khudyakov, I. Mechanisms of action and reactivities of the free radicals of inhibitors. Chem. Rev. 1987,87,1313–1357.

[23]

Ligon, S. C.; Husar, B.; Wutzel, H.; Holman, R.; Liska, R. Strategies to reduce oxygen inhibition in photoinduced polymerization. Chem. Rev. 2014,114,557–89.

[24]

Fernández, E.; Whiting, A. Synthesis and Application of Organoboron Compounds,Springer,2015, Vol. 49.

[25]

Suzuki, A. Organoboranes in Organic Syntheses Including Suzuki Coupling Reaction. Heterocycles 2010,80,15–43.

[26]

Ramachandran, P. V.; Brown, H. C. Organoboranes for syntheses,ACS Publications,2001, Vol. 783.

[27]

Fyfe, J. W. B.; Watson, A. J. B. Recent Developments in Organoboron Chemistry: Old Dogs. New Tricks. Chem 2017,3,31–55.

[28]

Miyaura, N.; Suzuki, A. Palladium-catalyzed cross-coupling reactions of organoboron compounds. Chem. Rev. 1995,95,2457–2483.

[29]

Lennox, A. J.; Lloyd-Jones, G. C. Selection of boron reagents for Suzuki-Miyaura coupling. Chem. Soc. Rev. 2014,43,412–43.

[30]

Davidson, M. Contemporary Boron Chemistry,Royal Society of Chemistry,2000, Vol. 253.

[31]

Ali, H. A.; Dembitsky, V. M.; Srebnik, M. Contemporary aspects of boron: Chemistry and biological applications. 2005.

[32]

Xu, L.; Zhang, S.; Li, P. Boron-selective reactions as powerful tools for modular synthesis of diverse complex molecules. Chem. Soc. Rev. 2015,44,8848–8858.

[33]

Diaz, D. B.; Yudin, A. K. The versatility of boron in biological target engagement. Nat. Chem. 2017,9,731–742.

[34]

Baker, S. J.; Ding, C. Z.; Akama, T.; Zhang, Y.-K.; Hernandez, V.; Xia, Y. Therapeutic potential of boron-containing compounds. Future Med. Chem. 2009,1,1275–1288.

[35]

Messner, K.; Vuong, B.; Tranmer, G. K. The Boron Advantage: The Evolution and Diversification of Boron’s Applications in Medicinal Chemistry. Pharmaceuticals 2022,15,264.

[36]

Hall, D. G. Boronic Acids: Preparation, Applications in Organic Synthesis and Medicine,John Wiley & Sons,2006.

[37]

Cheng, F.; Jäkle, F. Boron-containing polymers as versatile building blocks for functional nanostructured materials. Polym. Chem. 2011,2,2122–2132.

[38]

Ji, L.; Griesbeck, S.; Marder, T. B. Recent developments in and perspectives on three-coordinate boron materials: a bright future. Chem. Sci. 2017,8,846–863.

[39]

Aydin, M. Recent Advances in Boron-Containing Materials,IntechOpen,2020.

[40]

Huang, Z.; Wang, S.; Dewhurst, R. D.; Ignat’ev, N. V.; Finze, M.; Braunschweig, H. Boron: its role in energy-related processes and applications. Angew. Chem. Int. Ed. 2020,59,8800–8816.

[41]

Friese, F. W.; Studer, A. New avenues for C–B bond formation via radical intermediates. Chem. Sci. 2019,10,8503–8518.

[42]

Peng, T. Y.; Zhang, F.-L.; Wang, Y. F. Lewis Base-Boryl Radicals Enabled Borylation Reactions and Selective Activation of Carbon-Heteroatom Bonds. Acc. Chem. Res. 2023,56,169–186.

[43]

Taniguchi, T. Advances in chemistry of N-heterocyclic carbene boryl radicals. Chem. Soc. Rev. 2021,50,8995–9021.

[44]

Curran, D. P.; Solovyev, A.; Makhlouf Brahmi, M.; Fensterbank, L.; Malacria, M.; Lacôte, E. Synthesis and Reactions of N-Heterocyclic Carbene Boranes. Angew. Chem. Int. Ed. 2011,50,10294–10317.

[45]

Tian, Y. M.; Guo, X. N.; Braunschweig, H.; Radius, U.; Marder, T. B. Photoinduced borylation for the synthesis of organoboron compounds: Focus review. Chem. Rev. 2021,121,3561–3597.

[46]

Shang, Z. H.; Pan, J.; Wang, Z.; Zhang, Z. X.; Wu, J. Transition-Metal-Free Radical Borylation Reactions. Eur. J. Org. Chem. 2023,26,e202201379.

[47]

Lai, D.; Ghosh, S.; Hajra, A. Light-induced borylation: developments and mechanistic insights. Org. Biomol. Chem. 2021,19,4397–4428.

[48]

Zhu, C.; Dong, J.; Liu, X.; Gao, L.; Zhao, Y.; Xie, J.; Li, S.; Zhu, C. Photoredox-Controlled β-Regioselective Radical Hydroboration of Activated Alkenes with NHC-Boranes. Angew. Chem. Int. Ed. 2020,59,12817–12821.

[49]

Cheng, S.; Ouyang, J.; Li, M.; Diao, Y.; Yao, J.; Li, F.; Lee, Y.-F.; Sung, H. H.-Y.; Williams, I.; Xu, Z.; Quan, Y. Charge Separation in Metal-Organic Framework Enables Heterogeneous Thiol Catalysis. Angew. Chem. Int. Ed. 2023,62,e202300993.

[50]

Liu, X.; Lin, E. E.; Chen, G.; Li, J. L.; Liu, P.; Wang, H. Radical Hydroboration and Hydrosilylation of gem-Difluoroalkenes: Synthesis of α-Difluorinated Alkylborons and Alkylsilanes. Org. Lett. 2019,21,8454–8458.

[51]

Shi, Q.; Xu, M.; Chang, R.; Ramanathan, D.; Peñin, B.; Funes-Ardoiz, I.; Ye, J. Visible-light mediated catalytic asymmetric radical deuteration at non-benzylic positions. Nat. Commun. 2022,13,4453.

[52]

Xia, P. J.; Song, D.; Ye, Z. P.; Hu, Y. Z.; Xiao, J. A.; Xiang, H. Y.; Chen, X. Q.; Yang, H. Photoinduced Single-Electron Transfer as an Enabling Principle in the Radical Borylation of Alkenes with NHC-Borane. Angew. Chem. Int. Ed. 2020,59,6706–6710.

[53]

Dai, W.; McFadden, T. R.; Curran, D. P.; Früchtl, H. A.; Walton, J. C. 5-Endo cyclizations of NHC-boraallyl radicals bearing ester substituents: Characterization of derived 1, 2-oxaborole radicals and boralactones. J. Am. Chem. Soc. 2018,140,15868–15875.

[54]

Kawamoto, T.; Morioka, T.; Noguchi, K.; Curran, D. P.; Kamimura, A. Inverse hydroboration of imines with NHC-boranes is promoted by diphenyl disulfide and visible light. Org. Lett. 2021,23,1825–1828.

[55]

Kim, J. H.; Constantin, T.; Simonetti, M.; Llaveria, J.; Sheikh, N. S.; Leonori, D. A radical approach for the selective C-H borylation of azines. Nature 2021,595,677–683.

[56]

Sheng, H.; Zhang, B.-B.; Liu, Q.; Yang, Z. S.; Wang, Z.-X.; Chen, X.-Y. Direct photolysis of N-methoxypyridiniums for the pyridylation of carbon/heteroatom-hydrogen bonds. Sci. China Chem. 2022,65,2494–2499.

[57]

Choi, W.; Kim, M.; Lee, K.; Park, S.; Hong, S. C4-Selective C–H Borylation of Pyridinium Derivatives Driven by Electron Donor–Acceptor Complexes. Org. Lett. 2022,24,9452–9457.

[58]

Tehfe, M. A.; Makhlouf Brahmi, M.; Fouassier, J. P.; Curran, D. P.; Malacria, M.; Fensterbank, L.; Lacôte, E.; Lalevée, J. N-Heterocyclic carbenes−borane complexes: a new class of initiators for radical photopolymerization. Macromolecules 2010,43,2261–2267.

[59]

Telitel, S.; Vallet, A. L.; Flanigan, D. M.; Graff, B.; Morlet-Savary, F.; Rovis, T.; Lalevée, J.; Lacôte, E. Influence of Electronic Effects on the Reactivity of Triazolylidene-Boryl Radicals: Consequences for the use of N-Heterocyclic Carbene Boranes in Organic and Polymer Synthesis. Chem. Eur. J. 2015,21,13772–13777.

[60]

Prokofjevs, A.; Boussonniere, A.; Li, L.; Bonin, H.; Lacôte, E.; Curran, D. P.; Vedejs, E. Borenium ion catalyzed hydroboration of alkenes with N-heterocyclic carbene-boranes. J. Am. Chem. Soc. 2012,134,12281–12288.

[61]

Wang, Q.; Meng, W.; Feng, X.; Du, H. B(C6F5)3-Catalyzed Hydroboration of Alkenes with N-Heterocyclic Carbene Boranes via B-H Bond Activation. Chin. J. Chem. 2021,39,918–926.

[62]

Le Quéméner, F.; Subervie, D.; Morlet-Savary, F.; Lalevée, J.; Lansalot, M.; Bourgeat-Lami, E.; Lacôte, E. Visible-Light Emulsion Photopolymerization of Styrene. Angew. Chem. Int. Ed. 2018,57,957–961.

[63]

Boussonniere, A.; Pan, X.; Geib, S. J.; Curran, D. P. Borenium-Catalyzed Hydroborations of Silyl-Substituted Alkenes and Alkynes with a Readily Available N-Heterocyclic Carbene-Borane. Organometallics 2013,32,7445–7450.

[64]

Li, X.; Curran, D. P. Insertion of reactive rhodium carbenes into boron-hydrogen bonds of stable N-heterocyclic carbene boranes. J. Am. Chem. Soc. 2013,135,12076–12081.

[65]

Taniguchi, T.; Curran, D. P. Hydroboration of Arynes with N-Heterocyclic Carbene Boranes. Angew. Chem. Int. Ed. 2014,53,13150–13154.

[66]

Huang, X.; Garcia-Borràs, M.; Miao, K.; Kan, S. J.; Zutshi, A.; Houk, K.; Arnold, F. H. A biocatalytic platform for synthesis of chiral α-trifluoromethylated organoborons. ACS Cent. Sci. 2019,5,270–276.

[67]

Kawamoto, T.; Geib, S. J.; Curran, D. P. Radical Reactions of N-Heterocyclic Carbene Boranes with Organic Nitriles: Cyanation of NHC-Boranes and Reductive Decyanation of Malononitriles. J. Am. Chem. Soc. 2015,137,8617–8622.

[68]

Aubry, B.; Canterel, R.; Lansalot, M.; Bourgeat-Lami, E.; Airoudj, A.; Graff, B.; Dietlin, C.; Morlet-Savary, F.; Blahut, J.; Benda, L.; Pintacuda, G.; Lacôte, E.; Lalevée, J. Development of a Borane-(Meth) acrylate Photo-Click Reaction. Angew. Chem. Int. Ed. 2021,60,17037–17044.

[69]

Li, F. X.; Wang, X.; Lin, J.; Lou, X.; Ouyang, J.; Hu, G.; Quan, Y. Selective multifunctionalization of N-heterocyclic carbene boranes via the intermediacy of boron-centered radicals. Chem. Sci. 2023,14,6341–6347.

[70]

Wu, X.; Wang, Y.; Zhou, M. X.; Chen, Z.; Peng, X.; Wang, Z.; Zeng, Y. F. Switchable Access to Mono-and Di-Alkylated Boranes via Visible-Light-Induced Hydroboration of Alkenes with NHC-Borane. Adv. Synth. Catal. 2023,365,3824–3829.

[71]

Miao, Y. Q.; Li, X. Y.; Pan, Q. J.; Ma, Y.; Kang, J. X.; Ma, Y. N.; Liu, Z.; Chen, X. A general photo-induced wide-scope regioselective hydroboration of alkenes without using a photocatalyst or an external initiator. Green Chem. 2022,24,7113–7121.

[72]

Telitel, S.; Vallet, A. L.; Schweizer, S. P.; Delpech, B.; Blanchard, N.; Morlet-Savary, F.; Graff, B.; Curran, D. P.; Robert, M.; Lacôte, E. Formation of N-heterocyclic carbene-boryl radicals through electrochemical and photochemical cleavage of the B-S bond in N-heterocyclic carbene-boryl sulfides. J. Am. Chem. Soc. 2013,135,16938–16947.

[73]

Pan, X.; Lalevee, J.; Lacote, E.; Curran, D. P. Disulfides and Boryl Sulfides Serve as both Initiators and Precatalysts in Radical Reductions of Halides by an N-Heterocyclic Carbene·Borane. Adv. Synth. Catal. 2013,355,3522–3526.

[74]

An, Y.; Li, X.; Xia, S.; Jian, Y.; Wen, F.; Liu, Z.; He, J.; Shen, Y.; Wang, Y. Visible-Light Promoted Regioselective Hydroborylation of Ketene Dithioacetals with NHC-Boranes. J. Org. Chem. 2023,88,15151–15158.

[75]

Barth, R. F.; Coderre, J. A.; Vicente, M. G. H.; Blue, T. E. Boron neutron capture therapy of cancer: current status and future prospects. Clin. Cancer Res. 2005,11,3987–4002.

[76]

Bolt, D. A.; Curran, D. P. Reactions of NHC-Boranes with Dibenzoyl Peroxide and Benzoic Acid. Adv. Synth. Catal. 2020,362,2238–2244.

RIGHTS & PERMISSIONS

2024 The Authors. Chinese Journal of Chemistry published by SIOC, CAS, Shanghai and Wiley-VCH GmbH

AI Summary AI Mindmap
PDF

132

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/