Interfacing DNA and Aptamers with Gold Nanoparticles: From Fundamental Colloid and Interface Sciences to Biosensors

Yuzhe Ding , Juewen Liu

Chinese Journal of Chemistry ›› 2024, Vol. 42 ›› Issue (19) : 2391 -2400.

PDF
Chinese Journal of Chemistry ›› 2024, Vol. 42 ›› Issue (19) : 2391 -2400. DOI: 10.1002/cjoc.202400113
Chemistry Authors Up Close

Interfacing DNA and Aptamers with Gold Nanoparticles: From Fundamental Colloid and Interface Sciences to Biosensors

Author information +
History +
PDF

Abstract

Interfacing DNA oligonucleotides and DNA aptamers with gold nanoparticles has generated numerous functional hybrid materials for sensing, self-assembly and drug delivery applications. Our lab has been working in this area for 15 years. In this article, the current understanding of the adsorption of DNA to gold nanoparticles is summarized, and related applications in bioconjugation of DNA to gold surface is described. In addition, problems of using gold nanoparticles to signaling aptamer binding are discussed. Finally, re-selection of aptamers for previously reported targets using the library-immobilization method is reviewed.

Keywords

Aptamers / Biosensors / Gold nanoparticles / SELEX / Bioconjugation

Cite this article

Download citation ▾
Yuzhe Ding, Juewen Liu. Interfacing DNA and Aptamers with Gold Nanoparticles: From Fundamental Colloid and Interface Sciences to Biosensors. Chinese Journal of Chemistry, 2024, 42(19): 2391-2400 DOI:10.1002/cjoc.202400113

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Cutler, J. I.; Auyeung, E.; Mirkin, C. A. Spherical Nucleic Acids. J. Am. Chem. Soc. 2012,134,1376-1391.

[2]

Liu, B.; Liu, J. Interface Driven Hybrid Materials Based on DNA-Functionalized Gold Nanoparticles. Matter 2019,1,825-847.

[3]

Mirkin, C. A.; Letsinger, R. L.; Mucic, R. C.; Storhoff, J. J. A DNA-Based Method for Rationally Assembling Nanoparticles into Macroscopic Materials. Nature 1996,382,607-609.

[4]

Elghanian, R.; Storhoff, J. J.; Mucic, R. C.; Letsinger, R. L.; Mirkin, C. A. Selective Colorimetric Detection of Polynucleotides Based on the Distance-Dependent Optical Properties of Gold Nanoparticles. Science 1997,277,1078-1080.

[5]

Liu, J. W.; Lu, Y. A Colorimetric Lead Biosensor Using DNAzyme- Directed Assembly of Gold Nanoparticles. J. Am. Chem. Soc. 2003,125,6642-6643.

[6]

Liu, J.; Lu, Y. Fast Colorimetric Sensing of Adenosine and Cocaine Based on a General Sensor Design Involving Aptamers and Nanoparticles. Angew. Chem. Int. Ed. 2006,45,90-94.

[7]

Ma, L.; Liu, J. Catalytic Nucleic Acids: Biochemistry, Chemical Biology, Biosensors, and Nanotechnology. iScience 2020,23,100815.

[8]

McConnell, E. M.; Cozma, I.; Mou, Q.; Brennan, J. D.; Lu, Y.; Li, Y. Biosensing with DNAzymes. Chem. Soc. Rev. 2021,50,8954-8994.

[9]

Yu, H.; Alkhamis, O.; Canoura, J.; Liu, Y.; Xiao, Y. Advances and Challenges in Small-Molecule DNA Aptamer Isolation, Characterization, and Sensor Development. Angew. Chem. Int. Ed. 2021,60,16800-16823.

[10]

Lake, R. J.; Yang, Z. L.; Zhang, J. L.; Lu, Y. DNAzymes as Activity-Based Sensors for Metal Ions: Recent Applications, Demonstrated Advantages, Current Challenges, and Future Directions. Acc. Chem. Res. 2019,52,3275-3286.

[11]

Liu, J.; Cao, Z.; Lu, Y. Functional Nucleic Acid Sensors. Chem. Rev. 2009,109,1948-1998.

[12]

He, L.; Huang, R.; Xiao, P.; Liu, Y.; Jin, L.; Liu, H.; Li, S.; Deng, Y.; Chen, Z.; Li, Z.; He, N. Current Signal Amplification Strategies in Aptamer- Based Electrochemical Biosensor: A Review. Chin. Chem. Lett. 2021,32,1593-1602.

[13]

Wu, L.; Wang, Y.; Xu, X.; Liu, Y.; Lin, B.; Zhang, M.; Zhang, J.; Wan, S.; Yang, C.; Tan, W. Aptamer-Based Detection of Circulating Targets for Precision Medicine. Chem. Rev. 2021,121,12035-12105.

[14]

Ebrahimi, S. B.; Samanta, D.; Cheng, H. F.; Nathan, L. I.; Mirkin, C. A. Forced Intercalation (FIT)-Aptamers. J. Am. Chem. Soc. 2019,141,13744-13748.

[15]

Qi, L.; Han, X.; Du, Y. Improved Sensitivity for Ratiometric Fluorescence Detection of Ricin Based on “Kinetic Competition” Aptasensing Strategy. Sens. Actuators B Chem. 2020,314,128073.

[16]

Opdahl, A.; Petrovykh, D. Y.; Kimura-Suda, H.; Tarlov, M. J.; Whitman, L. J. Independent Control of Grafting Density and Conformation of Single-Stranded DNA Brushes. Proc. Natl. Acad. Sci. U. S. A. 2007,104,9-14.

[17]

Pei, H.; Li, F.; Wan, Y.; Wei, M.; Liu, H.; Su, Y.; Chen, N.; Huang, Q.; Fan, C. Designed Diblock Oligonucleotide for the Synthesis of Spatially Isolated and Highly Hybridizable Functionalization of DNA-Gold Nanoparticle Nanoconjugates. J. Am. Chem. Soc. 2012,134,11876-11879.

[18]

Zhang, X.; Liu, B.; Dave, N.; Servos, M. R.; Liu, J. Instantaneous Attachment of an Ultrahigh Density of Nonthiolated DNA to Gold Nanoparticles and Its Applications. Langmuir 2012,28,17053-17060.

[19]

Li, H.; Rothberg, L. J. Label-Free Colorimetric Detection of Specific Sequences in Genomic DNA Amplified by the Polymerase Chain Reaction. J. Am. Chem. Soc. 2004,126,10958-10961.

[20]

Li, H.; Rothberg, L. Colorimetric Detection of DNA Sequences Based on Electrostatic Interactions with Unmodified Gold Nanoparticles. Proc. Natl. Acad. Sci. U. S. A. 2004,101,14036-14039.

[21]

Zhang, F.; Liu, J. Label-Free Colorimetric Biosensors Based on Aptamers and Gold Nanoparticles: A Critical Review. Anal. Sens. 2021,1,30-43.

[22]

Herne, T. M.; Tarlov, M. J. Characterization of DNA Probes Immobilized on Gold Surfaces. J. Am. Chem. Soc. 1997,119,8916-8920.

[23]

Carnerero, J. M.; Jimenez-Ruiz, A.; Castillo, P. M.; Prado-Gotor, R. Covalent and Non-Covalent DNA-Gold-Nanoparticle Interactions: New Avenues of Research. ChemPhysChem 2017,18,17-33.

[24]

Liu, J. Adsorption of DNA onto Gold Nanoparticles and Graphene Oxide: Surface Science and Applications. PCCP 2012,14,10485-10496.

[25]

Kimura-Suda, H.; Petrovykh, D. Y.; Tarlov, M. J.; Whitman, L. J. Base-Dependent Competitive Adsorption of Single-Stranded DNA on Gold. J. Am. Chem. Soc. 2003,125,9014-9015.

[26]

Liu, B.; Wu, P.; Huang, Z.; Ma, L.; Liu, J. Bromide as a Robust Backfiller on Gold for Precise Control of DNA Conformation and High Stability of Spherical Nucleic Acids. J. Am. Chem. Soc. 2018,140,4499-4502.

[27]

Zhang, F.; Wang, S.; Liu, J. Gold Nanoparticles Adsorb DNA and Aptamer Probes Too Strongly and a Comparison with Graphene Oxide for Biosensing. Anal. Chem. 2019,91,14743-14750.

[28]

Liu, B.; Liu, J. Methods for Preparing DNA-Functionalized Gold Nanoparticles, a Key Reagent of Bioanalytical Chemistry. Anal. Methods 2017,9,2633-2643.

[29]

Liu, B.; Kelly, E. Y.; Liu, J. Cation-Size-Dependent DNA Adsorption Kinetics and Packing Density on Gold Nanoparticles: An Opposite Trend. Langmuir 2014,30,13228-13234.

[30]

Hurst, S. J.; Lytton-Jean, A. K. R.; Mirkin, C. A. Maximizing DNA Loading on a Range of Gold Nanoparticle Sizes. Anal. Chem. 2006,78,8313-8318.

[31]

Stoeva, S. I.; Lee, J.-S.; Thaxton, C. S.; Mirkin, C. A. Multiplexed DNA Detection with Biobarcoded Nanoparticle Probes. Angew. Chem. Int. Ed. 2006,45,3303-3306.

[32]

Zhang, X.; Servos, M. R.; Liu, J. Surface Science of DNA Adsorption onto Citrate-Capped Gold Nanoparticles. Langmuir 2012,28,3896-3902.

[33]

Zhang, X.; Servos, M. R.; Liu, J. Instantaneous and Quantitative Functionalization of Gold Nanoparticles with Thiolated DNA Using a Ph-Assisted and Surfactant-Free Route. J. Am. Chem. Soc. 2012,134,7266-7269.

[34]

Huang, Z.; Liu, B.; Liu, J. Parallel Polyadenine Duplex Formation at Low Ph Facilitates DNA Conjugation onto Gold Nanoparticles. Langmuir 2016,32,11986-11992.

[35]

Liu, B.; Liu, J. Freezing Directed Construction of Bio/Nano Interfaces: Reagentless Conjugation, Denser Spherical Nucleic Acids, and Better Nanoflares. J. Am. Chem. Soc. 2017,139,9471-9474.

[36]

Liu, B.; Wu, T.; Huang, Z.; Liu, Y.; Liu, J. Freezing-Directed Stretching and Alignment of DNA Oligonucleotides. Angew. Chem. Int. Ed. 2019,58,2109-2113.

[37]

Hao, Y.; Li, Y.; Song, L.; Deng, Z. Flash Synthesis of Spherical Nucleic Acids with Record DNA Density. J. Am. Chem. Soc. 2021,143,3065-3069.

[38]

Huang, M.; Xiong, E.; Wang, Y.; Hu, M.; Yue, H.; Tian, T.; Zhu, D.; Liu, H.; Zhou, X. Fast Microwave Heating-Based One-Step Synthesis of DNA and RNA Modified Gold Nanoparticles. Nat. Commun. 2022,13,968.

[39]

Ye, Y.; Hao, Y.; Ye, M.; Song, X.; Deng, Z. Evaporative Drying: A General and Readily Scalable Route to Spherical Nucleic Acids with Quantitative, Fully Tunable, and Record-High DNA Loading. Small 2022,18,2202458.

[40]

Xu, Q.; Lou, X.; Wang, L.; Ding, X.; Yu, H.; Xiao, Y. Rapid, Surfactant- Free, and Quantitative Functionalization of Gold Nanoparticles with Thiolated DNA under Physiological Ph and Its Application in Molecular Beacon-Based Biosensor. ACS Appl. Mater. Interfaces 2016,8,27298-27304.

[41]

Zu, Y.; Gao, Z. Facile and Controllable Loading of Single-Stranded DNA on Gold Nanoparticles. Anal. Chem. 2009,81,8523-8528.

[42]

Li, Z.; Lv, Y.; Duan, X.; Liu, B.; Zhao, Y. Highly Uniform DNA Monolayers Generated by Freezing-Directed Assembly on Gold Surfaces Enable Robust Electrochemical Sensing in Whole Blood. Angew. Chem. Int. Ed. 2023,62,e202312975.

[43]

Jiang, H.; Materon, E. M.; Sotomayor, M. D. P. T.; Liu, J. Fast Assembly of Non-Thiolated DNA on Gold Surface at Lower pH. J. Colloid Interface Sci. 2013,411,92-97.

[44]

Huang, P.-J. J. J.; Yang, J.; Chong, K.; Ma, Q.; Li, M.; Zhang, F.; Moon, W. J.; Zhang, G.; Liu, J. Good’s Buffers Have Various Affinities on Gold Nanoparticles Regulating Fluorescent and Colorimetric DNA Sensing. Chem. Sci. 2020,11,6795-6804.

[45]

Kim, M.; Um, H. J.; Bang, S.; Lee, S. H.; Oh, S. J.; Han, J. H.; Kim, K. W.; Min, J.; Kim, Y. H. Arsenic Removal from Vietnamese Groundwater Using the Arsenic-Binding DNA Aptamer. Environ. Sci. Technol. 2009,43,9335-9340.

[46]

Zong, C.; Zhang, Z.; Liu, B.; Liu, J. Adsorption of Arsenite on Gold Nanoparticles Studied with DNA Oligonucleotide Probes. Langmuir 2019,35,7304-7311.

[47]

Liu, X.; He, F.; Zhang, F.; Zhang, Z.; Huang, Z.; Liu, J. Dopamine and Melamine Binding to Gold Nanoparticles Dominates Their Aptamer- Based Label-Free Colorimetric Sensing. Anal. Chem. 2020,92,9370-9378.

[48]

Zhang, F.; Huang, P.-J. J.; Liu, J. Sensing Adenosine and Atp by Aptamers and Gold Nanoparticles: Opposite Trends of Color Change from Domination of Target Adsorption Instead of Aptamer Binding. ACS Sensors 2020,5,2885-2893.

[49]

Zhou, J.; Li, Y.; Wang, W.; Lu, Z.; Han, H.; Liu, J. Kanamycin Adsorption on Gold Nanoparticles Dominates Its Label-Free Colorimetric Sensing with Its Aptamer. Langmuir 2020,36,11490-11498.

[50]

Zhang, F.; Liu, J. Interactions of the Cocaine and Quinine Aptamer with Gold Nanoparticles under the Dilute Biosensor and Concentrated Nmr Conditions. Langmuir 2021,37,11939-11947.

[51]

Song, Y.; Eppinghoven, D. H. G. v.; Zhou, Y.; Zhang, H.; Liu, J. Adsorption of Tetracycline Antibiotics to Gold Nanoparticles and Feasibility of Aptamer-Based Label-Free Colorimetric Detection. Can. J. Chem. 2023,101,343-352.

[52]

Hu, Y.; Huang, Z.; Liu, B.; Liu, J. Hg(Ii) Adsorption on Gold Nanoparticles Dominates DNA-Based Label-Free Colorimetric Sensing. ACS Appl. Nano Mater. 2021,4,1377-1384.

[53]

Hu, S.; Huang, P.-J. J.; Wang, J.; Liu, J. Dissecting the Effect of Salt for More Sensitive Label-Free Colorimetric Detection of DNA Using Gold Nanoparticles. Anal. Chem. 2020,92,13354-13360.

[54]

Kavita, K.; Breaker, R. R. Discovering Riboswitches: The Past and the Future. Trends Biochem. Sci 2023,48,119-141.

[55]

Zhao, Y.; Yavari, K.; Liu, J. Critical Evaluation of Aptamer Binding for Biosensor Designs. TrAC, Trends Anal. Chem. 2022,146,116480.

[56]

Zong, C.; Liu, J. The Arsenic-Binding Aptamer Cannot Bind Arsenic: Critical Evaluation of Aptamer Selection and Binding. Anal. Chem. 2019,91,10887-10893.

[57]

Bottari, F.; Daems, E.; de Vries, A.-M.; Van Wielendaele, P.; Trashin, S.; Blust, R.; Sobott, F.; Madder, A.; Martins, J. C.; De Wael, K. Do Aptamers Always Bind? The Need for a Multifaceted Analytical Approach When Demonstrating Binding Affinity between Aptamer and Low Molecular Weight Compounds. J. Am. Chem. Soc. 2020,142,19622-19630.

[58]

Zara, L.; Achilli, S.; Chovelon, B.; Fiore, E.; Toulmé J.-J.; Peyrin, E.; Ravelet, C. Anti-Pesticide DNA Aptamers Fail to Recognize Their Targets with Asserted Micromolar Dissociation Constants. Anal. Chim. Acta 2021,1159,338382.

[59]

Ding, Y.; Liu, X.; Huang, P.-J. J.; Liu, J. Homogeneous Assays for Aptamer-Based Ethanolamine Sensing: No Indication of Target Binding. Analyst 2022,147,1348-1356.

[60]

Nutiu, R.; Li, Y. In Vitro Selection of Structure-Switching Signaling Aptamers. Angew. Chem. Int. Ed. 2005,44,1061-1065.

[61]

Rajendran, M.; Ellington, A. D. In Vitro Selection of Molecular Beacons. Nucleic Acids Res. 2003,31,5700-5713.

[62]

Nakatsuka, N.; Yang, K.-A.; Abendroth, J. M.; Cheung, K. M.; Xu, X.; Yang, H.; Zhao, C.; Zhu, B.; Rim, Y. S.; Yang, Y.; Weiss, P. S.; Stojanović M. N.; Andrews, A. M. Aptamer-Field-Effect Transistors Overcome Debye Length Limitations for Small-Molecule Sensing. Science 2018,362,319-324.

[63]

Ding, Y.; Liu, J. Pushing Adenosine and ATP SELEX for DNA Aptamers with Nanomolar Affinity. J. Am. Chem. Soc. 2023,145,7540-7547.

[64]

Jenison, R. D.; Gill, S. C.; Pardi, A.; Polisky, B. High-Resolution Molecular Discrimination by RNA. Science 1994,263,1425-1429.

[65]

Ding, Y.; Xie, Y.; Li, A. Z.; Huang, P.-J. J.; Liu, J. Cross-Binding of Four Adenosine/Atp Aptamers to Caffeine, Theophylline, and Other Methylxanthines. Biochemistry 2023,62,2280-2288.

[66]

Gu, L.; Ding, Y.; Zhou, Y.; Zhang, Y.; Wang, D.; Liu, J. Selective Hemin Binding by a Non-G-Quadruplex Aptamer with Higher Affinity and Better Peroxidase-Like Activity. Angew. Chem. Int. Ed. 2024,63,e202314450.

[67]

Zhao, Y.; Ong, S.; Chen, Y.; Jimmy Huang, P.-J.; Liu, J. Label-Free and Dye-Free Fluorescent Sensing of Tetracyclines Using a Capture- Selected DNA Aptamer. Anal. Chem. 2022,94,10175-10182.

[68]

Zhao, Y.; Gao, B.; Liu, J. Characterization of the Binding Properties of Ten Aptamers Using the Intrinsic Fluorescence of Oxytetracycline. ChemistryOpen 2024,e202300250.

[69]

Niazi, J. H.; Lee, S. J.; Kim, Y. S.; Gu, M. B. Ssdna Aptamers That Selectively Bind Oxytetracycline. Biorg. Med. Chem. 2008,16,1254-1261.

[70]

Huang, P.-J. J.; Liu, J. Simultaneous Detection of L-Lactate and D-Glucose Using DNA Aptamers in Human Blood Serum. Angew. Chem. Int. Ed. 2023,62,e202212879.

[71]

Ding, Y.; Liu, J. Quantitative Comparison of Capture-SELEX, Go-SELEX, and Gold-SELEX for Enrichment of Aptamers. Anal. Chem. 2023,95,14651-14658.

[72]

Ding, Y.; Gu, L.; Wang, X.; Zhang, Z.; Zhang, H.; Liu, J. Affinity-Guided Coevolution of Aptamers for Guanine, Xanthine, Hypoxanthine, and Adenine. ACS Chem. Biol. 2024,19,208-216.

[73]

Zhao, Y.; Gao, B.; Chen, Y.; Liu, J. An Aptamer Array for Discriminating Tetracycline Antibiotics Based on Binding-Enhanced Intrinsic Fluorescence. Analyst 2023,148,1507-1513.

[74]

Huang, P.-J. J.; Liu, J. A DNA Aptamer for Theophylline with Ultrahigh Selectivity Reminiscent of the Classic RNA Aptamer. ACS Chem. Biol. 2022,17,2121-2129.

[75]

Pang, X. H.; Cui, C.; Wan, S.; Jiang, Y.; Zhang, L. L.; Xia, L.; Li, L.; Li, X. W.; Tan, W. H. Bioapplications of Cell-SELEX-Generated Aptamers in Cancer Diagnostics, Therapeutics, Theranostics and Biomarker Discovery: A Comprehensive Review. Cancers 2018,10,47.

[76]

Wong, K.-Y.; Liu, Y.; Wong, M.-S.; Liu, J. Cornea-SELEX for Aptamers Targeting the Surface of Eyes and Liposomal Drug Delivery. Exploration 2024,20230008.

RIGHTS & PERMISSIONS

2024 The Authors. Chinese Journal of Chemistry published by SIOC, CAS, Shanghai and Wiley-VCH GmbH

AI Summary AI Mindmap
PDF

193

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/