Generation and Applications of a Broad Atomic Oxygen Beam with a High Flux-Density via Collision-Induced Dissociation of O2

Zhiqiang Han , Liying Song , Po-Wan Shum , Woon-Ming Lau

Chinese Journal of Chemistry ›› 2024, Vol. 42 ›› Issue (17) : 2010 -2016.

PDF
Chinese Journal of Chemistry ›› 2024, Vol. 42 ›› Issue (17) : 2010 -2016. DOI: 10.1002/cjoc.202400081
Concise Report

Generation and Applications of a Broad Atomic Oxygen Beam with a High Flux-Density via Collision-Induced Dissociation of O2

Author information +
History +
PDF

Abstract

We detail the generation of a pulsed atomic oxygen (AO) broad beam with a high flux-density via collision-induced dissociation of O 2 to support practical industrial exploitation of AOs, particularly for facilitating 2-dimenstional oxidation/etching at a fast rate of one-monolayer per second in an area ≥ 1000 cm 2. This innovation fuses the following interdisciplinary concepts: (a) a high density of O + can be produced in an electron-cyclotron-resonance (ECR) O 2 plasma; (b) O + can be extracted and accelerated with an aperture-electrode in the plasma; (c) O + with adequate kinetic energy can initiate a cascade of gas-phase collisions in the presence of O 2; (d) collision-induced dissociation of O 2 yields AOs with adequate kinetic energy which can cause additional collision-induced dissociation of O 2. Computational simulations of such collisions, with both  ab initio molecular dynamics and direct simulation Monte Carlo methods, are used to guide the experimental generation of the proposed AO-beam. We experimentally demonstrate the highest known AO mean flux-density of about 1.5 × 10 16 atoms·cm -2·s -1 in a broad-beam, and use it to oxidatively modify a self-assembled molecular layer of siloxane on a silicon wafer. In addition, we also demonstrate the growth of Al 2O 3 through an AO-assisted atomic layer deposition process at room temperature.

Keywords

Collision / Atomic oxygen / Ab initio calculations / Ion-molecule reactions / Gas-phase reactions

Cite this article

Download citation ▾
Zhiqiang Han, Liying Song, Po-Wan Shum, Woon-Ming Lau. Generation and Applications of a Broad Atomic Oxygen Beam with a High Flux-Density via Collision-Induced Dissociation of O2. Chinese Journal of Chemistry, 2024, 42(17): 2010-2016 DOI:10.1002/cjoc.202400081

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Hansen, R.; Pascale, J.; De Benedictis, T.; Rentzepis, P. Effect of atomic oxygen on polymers. J. Polym. Sci., Part A: Gen. Pap. 1965,3,2205–2214.

[2]

Parker, D. H.; Bartram, M. E.; Koel, B. E. Study of high coverages of atomic oxygen on the Pt (111) surface. Surf. Sci. 1989,217,489–510.

[3]

Engel, T. The interaction of molecular and atomic oxygen with Si (100) and Si (111). Surf. Sci. Rep. 1993,18,93–144.

[4]

Kim, T. S.; Gong, J.; Ojifinni, R. A.; White, J.; Mullins, C. B. Water activated by atomic oxygen on Au (111) to oxidize CO at low temperatures. J. Am. Chem. Soc. 2006,128,6282–6283.

[5]

Vinogradov, N. A.; Schulte, K.; Ng, M. L.; Mikkelsen, A.; Lundgren, E.; Martensson, N.; Preobrajenski, A. Impact of atomic oxygen on the structure of graphene formed on Ir (111) and Pt (111). J. Phys. Chem. C 2011,115,9568–9577.

[6]

Li, H.; Shang, H.; Jiang, F.; Zhu, X.; Ruan, Q.; Zhang, L.; Wang, J. Plasmonic O2 dissociation and spillover expedite selective oxidation of primary C–H bonds. Chem. Sci. 2021,12,15308–15317.

[7]

Le Formal, F.; Tétreault, N.; Cornuz, M.; Moehl, T.; Grätzel, M.; Sivula, K. Passivating surface states on water splitting hematite photoanodes with alumina overlayers. Chem. Sci. 2011,2,737–743.

[8]

Kamire, R. J.; Majewski, M. B.; Hoffeditz, W. L.; Phelan, B. T.; Farha, O. K.; Hupp, J. T.; Wasielewski, M. R. Photodriven hydrogen evolution by molecular catalysts using Al2O3-protected perylene-3, 4-dicarboximide on NiO electrodes. Chem. Sci. 2017,8,541–549.

[9]

Chandrasekaran, S.; Kaeffer, N.; Cagnon, L.; Aldakov, D.; Fize, J.; Nonglaton, G.; Baleras, F.; Mailley, P.; Artero, V. A robust ALD-protected silicon-based hybrid photoelectrode for hydrogen evolution under aqueous conditions. Chem. Sci. 2019,10,4469–4475.

[10]

Rahman, F.; Runyon, J. C. Atomic layer processes for material growth and etching—a review. IEEE Trans. Semicond. Manuf. 2021,34,500–512.

[11]

Das, S.; Sebastian, A.; Pop, E.; McClellan, C. J.; Franklin, A. D.; Grasser, T.; Knobloch, T.; Illarionov, Y.; Penumatcha, A. V.; Appenzeller, J. Transistors based on two-dimensional materials for future integrated circuits. Nat. Electron. 2021,4,786–799.

[12]

Liu, Q.; Ranocchiari, M.; van Bokhoven, J. A. Catalyst overcoating engineering towards high-performance electrocatalysis. Chem. Soc. Rev. 2022,51,188–236.

[13]

Xu, X.; Guo, T.; Kim, H.; Hota, M. K.; Alsaadi, R. S.; Lanza, M.; Zhang, X.; Alshareef, H. N. Growth of 2D materials at the wafer scale. Adv. Mater. 2022,34,2108258.

[14]

Chutjian, A.; Orient, O. J. Variable energy, high flux, ground-state atomi. oxygen source. US 4649273,1987.

[15]

Clampitt, R. Cracking of feedstocks. US 5681535,1997.

[16]

Lee, C.; Graves, D.; Lieberman, M.; Hess, D. Global model of plasma chemistry in a high density oxygen discharge. J. Electrochem. Soc. 1994,141,1546–1555.

[17]

Naddaf, M.; Bhoraskar, V.; Mandale, A.; Sainkar, S.; Bhoraskar, S. Characterization of atomic oxygen from an ECR plasma source. Plasma Sources Sci. Technol. 2002,11,361–367.

[18]

Korolov, I.; Steuer, D.; Bischoff, L.; Hübner, G.; Liu, Y.; Schulz-Von der Gathen, V.; Böke, M.; Mussenbrock, T.; Schulze, J. Atomic oxygen generation in atmospheric pressure RF plasma jets driven by tailored voltage waveforms in mixtures of He and O2. J. Phys. D: Appl. Phys. 2021,54,125203.

[19]

Katsube, D.; Ohno, S.; Takayanagi, S.; Ojima, S.; Maeda, M.; Origuchi, N.; Ogawa, A.; Ikeda, N.; Aoyagi, Y.; Kabutoya, Y. Oxidation of Anatase TiO2 (001) Surface Using Supersonic Seeded Oxygen Molecular Beam. Langmuir. 2021,37,12313–12317.

[20]

Grossman, E.; Gouzman, I.; Viel-Inguimbert, V.; Dinguirard, M. Modification of a 5-eV atomic-oxygen laser detonation source. J. Spacecr. Rockets 2003,40,110–113.

[21]

Tagawa, M.; Okura, R.; Ide, W.; Horimoto, S.; Ezaki, K.; Fujita, A.; Shoda, K.; Yokota, K. Laser-detonation hyperthermal beam source applicable to VLEO environmental simulations. CEAS Space J. 2022,14,757–765.

[22]

Duo, S.; Li, M.; Zhang, Y.; Zhou, Y. A simulator for producing of high flux atomic oxygen beam by using ECR plasma source. J. Mater. Sci. Technol. 2004,20,759–762.

[23]

Wray, K. L. Shock-Tube Study of the Coupling of the O2–Ar Rates of Dissociation and Vibrational Relaxation. J. Chem. Phys. 1962,37,1254–1263.

[24]

Koura, K. A set of model cross sections for the Monte Carlo simulation of rarefied real gases: Atom–diatom collisions. Phys. Fluids 1994,6,3473–3486.

[25]

Wagner, W. A convergence proof for Bird’s direct simulation Monte Carlo method for the Boltzmann equation. J. Stat. Phys. 1992,66,1011–1044.

[26]

Haas, B. L.; Hash, D. B.; Bird, G. A.; Lumpkin III, F. E.; Hassan, H. A. Rates of thermal relaxation in direct simulation Monte Carlo methods. Phys. Fluids 1994,6,2191–2201.

[27]

Gad-el-Hak, M. The fluid mechanics of microdevices—the Freeman scholar lecture. J. Fluids Eng. 1999,121,29.

[28]

Alexeenko, A. A.; Gimelshein, S. F.; Levin, D. A. Reconsideration of low Reynolds number flow-through constriction microchannels using the DSMC method. J. Microelectromech. Syst. 2005,14,847–856.

[29]

Lofthouse, A. J.; Scalabrin, L. C.; Boyd, I. D. Velocity slip and temperature jump in hypersonic aerothermodynamics. J. Thermophys. Heat Transfer. 2008,22,38–49.

[30]

Bird, G. Comment on “Direct simulation Monte Carlo method for an arbitrary intermolecular potential” [Phys. Fluids 24, 011703 (2012)]. Phys. Fluids 2013,25,049101.

[31]

Seman, M. T.; Richards, D. N.; Rowlette, P.; Wolden, C. A. An Analysis of the Deposition Mechanisms involved during Self-Limiting Growth of Aluminum Oxide by Pulsed PECVD. Chem. Vap. Deposition 2008,14,296–302.

[32]

Gas Viscosity Calculator,LMNO Engineering, Research, and Software, Ltd., https://www.lmnoeng.com/Flow/GasViscosity.php.

RIGHTS & PERMISSIONS

2024 The Authors. Chinese Journal of Chemistry published by SIOC, CAS, Shanghai and Wiley-VCH GmbH

AI Summary AI Mindmap
PDF

118

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/