PDF
Abstract
Let R be a commutative ring with identity and let S be a multiplicatively closed subset of R. A submodule P of an R-module M with $(P:_{R}M)\cap S=\emptyset $ is said to be an S-prime submodule of M if there exists a fixed $s\in S$ and whenever $am\in P$, then $sa\in (P:_{R}M)$ or $sm\in P$ for each $a\in R$, $m\in M$. The set of all S-prime submodules of M is denoted by $Spec_{S}(M)$. In this paper, we construct and investigate a topology on $Spec_{S}(M)$ which we will call classical S-Zariski topology for an R-module M. We use specific algebraic properties of M to obtain some topological properties such as separation axioms, compactness, connectedness, and irreducibility. We also investigate classical S-Zariski topology from the point of view spectral spaces by using Hochster’s characterization.
Keywords
S-prime submodule
/
S-multiplication module
/
S-Zariski topology
/
Classical S-Zariski topology
/
13C13
/
13C99
/
54B99
Cite this article
Download citation ▾
Yücel Yılmaz, Seçil Çeken.
Classical S-Zariski Topology of a Module.
Communications in Mathematics and Statistics 1-14 DOI:10.1007/s40304-025-00455-4
| [1] |
AndersonDD, ArabaciT, TekirÜ, KoçS. On S-multiplication modules. Commun. Algebra, 2020, 48: 3398-3407.
|
| [2] |
AtiyahMMacDonald, I: Introduction to Commutative Algebra, 1969, Reading. Addison-Wesley.
|
| [3] |
BarnardA. Multiplication modules. J. Algebra, 1981, 71: 174-178.
|
| [4] |
BehboodiM, HaddadiM. R: Classical Zariski topology of modules and spectral spaces I. International Electronic Journal of Algebra, 2008, 4(4): 104-130
|
| [5] |
BehboodiM, HaddadiM. R: Classical Zariski topology of modules and spectral spaces II. International Electronic Journal of Algebra, 2008, 4(4): 131-148
|
| [6] |
BilginZ, ReyesML. Tekir, Ü: On right S-Noetherian rings and S-Noetherian modules. Comm. Algebra, 2018, 46(2): 863-869.
|
| [7] |
DaunsJ. Prime submodules. J. Reine Angew. Math., 1978, 298: 156-181
|
| [8] |
AhmedH. Sana, H: Modules satisfying the S-Noetherian property and S-ACCR. Communications in Algebra, 2016, 44(5): 1941-1951.
|
| [9] |
HamedA, MalekA. S-prime ideals of a commutative ring. Beitrage zur Algebra und Geometrie/Contributions to Algebra and Geometry, 2020, 61: 533-542.
|
| [10] |
HochsterM. Prime ideal structure in commutative rings. Trans. Amer. Math. Soc., 1969, 142: 43-60.
|
| [11] |
Munkres, Topology J.R: A First Course, Prentice-Hall (1975)
|
| [12] |
SevimES, ArabaciT, TekirÜ, KoçS. On S-prime submodules. Turkish Journal of Mathematics, 2019, 43(2): 1036-1046.
|
| [13] |
Sharp, R.Y: Steps in Commutative Algebra. Cambridge, UK: Cambridge University Press, (2000)
|
| [14] |
SmithP. F: Some remarks on multiplication modules. Archiv der Mathematik, 1988, 50: 223-235.
|
| [15] |
YıldızE, ErsoyBA, TekirÜ, KoçS. On S-Zariski topology. Communications in Algebra, 2021, 49(3): 1212-1224.
|
| [16] |
YıldızE, ErsoyBA, TekirÜ. S-Zariski Topology on S-Spectrum of Modules. Filomat, 2022, 36(20): 7103-7112.
|
Funding
Trakya University
RIGHTS & PERMISSIONS
The Author(s)
Just Accepted
This article has successfully passed peer review and final editorial review, and will soon enter typesetting, proofreading and other publishing processes. The currently displayed version is the accepted final manuscript. The officially published version will be updated with format, DOI and citation information upon launch. We recommend that you pay attention to subsequent journal notifications and preferentially cite the officially published version. Thank you for your support and cooperation.