Classical S-Zariski Topology of a Module

Yücel Yılmaz , Seçil Çeken

Communications in Mathematics and Statistics ›› : 1 -14.

PDF
Communications in Mathematics and Statistics ›› :1 -14. DOI: 10.1007/s40304-025-00455-4
Article
research-article

Classical S-Zariski Topology of a Module

Author information +
History +
PDF

Abstract

Let R be a commutative ring with identity and let S be a multiplicatively closed subset of R. A submodule P of an R-module M with $(P:_{R}M)\cap S=\emptyset $ is said to be an S-prime submodule of M if there exists a fixed $s\in S$ and whenever $am\in P$, then $sa\in (P:_{R}M)$ or $sm\in P$ for each $a\in R$, $m\in M$. The set of all S-prime submodules of M is denoted by $Spec_{S}(M)$. In this paper, we construct and investigate a topology on $Spec_{S}(M)$ which we will call classical S-Zariski topology for an R-module M. We use specific algebraic properties of M to obtain some topological properties such as separation axioms, compactness, connectedness, and irreducibility. We also investigate classical S-Zariski topology from the point of view spectral spaces by using Hochster’s characterization.

Keywords

S-prime submodule / S-multiplication module / S-Zariski topology / Classical S-Zariski topology / 13C13 / 13C99 / 54B99

Cite this article

Download citation ▾
Yücel Yılmaz, Seçil Çeken. Classical S-Zariski Topology of a Module. Communications in Mathematics and Statistics 1-14 DOI:10.1007/s40304-025-00455-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

AndersonDD, ArabaciT, TekirÜ, KoçS. On S-multiplication modules. Commun. Algebra, 2020, 48: 3398-3407.

[2]

AtiyahMMacDonald, I: Introduction to Commutative Algebra, 1969, Reading. Addison-Wesley.

[3]

BarnardA. Multiplication modules. J. Algebra, 1981, 71: 174-178.

[4]

BehboodiM, HaddadiM. R: Classical Zariski topology of modules and spectral spaces I. International Electronic Journal of Algebra, 2008, 4(4): 104-130

[5]

BehboodiM, HaddadiM. R: Classical Zariski topology of modules and spectral spaces II. International Electronic Journal of Algebra, 2008, 4(4): 131-148

[6]

BilginZ, ReyesML. Tekir, Ü: On right S-Noetherian rings and S-Noetherian modules. Comm. Algebra, 2018, 46(2): 863-869.

[7]

DaunsJ. Prime submodules. J. Reine Angew. Math., 1978, 298: 156-181

[8]

AhmedH. Sana, H: Modules satisfying the S-Noetherian property and S-ACCR. Communications in Algebra, 2016, 44(5): 1941-1951.

[9]

HamedA, MalekA. S-prime ideals of a commutative ring. Beitrage zur Algebra und Geometrie/Contributions to Algebra and Geometry, 2020, 61: 533-542.

[10]

HochsterM. Prime ideal structure in commutative rings. Trans. Amer. Math. Soc., 1969, 142: 43-60.

[11]

Munkres, Topology J.R: A First Course, Prentice-Hall (1975)

[12]

SevimES, ArabaciT, TekirÜ, KoçS. On S-prime submodules. Turkish Journal of Mathematics, 2019, 43(2): 1036-1046.

[13]

Sharp, R.Y: Steps in Commutative Algebra. Cambridge, UK: Cambridge University Press, (2000)

[14]

SmithP. F: Some remarks on multiplication modules. Archiv der Mathematik, 1988, 50: 223-235.

[15]

YıldızE, ErsoyBA, TekirÜ, KoçS. On S-Zariski topology. Communications in Algebra, 2021, 49(3): 1212-1224.

[16]

YıldızE, ErsoyBA, TekirÜ. S-Zariski Topology on S-Spectrum of Modules. Filomat, 2022, 36(20): 7103-7112.

Funding

Trakya University

RIGHTS & PERMISSIONS

The Author(s)

PDF

83

Accesses

0

Citation

Detail

Sections
Recommended

/