We establish the existence and uniqueness of solutions of stochastic nonlinear Schrödinger equations with rotation in a weighted Sobolev space. In order to obtain the global well-posedness, we need some a priori estimates for the energy of the solution, which requires a careful analysis of the commutators involved. An important role is also played by the $\textrm{It}\hat{o}$ formula for the $L^p$ and Sobolev norms of the solution.
| [1] |
AftalionAVortices in Bose–Einstein Condensates, Progress in Nonlinear Differential Equations and their Applications, 67, 2006, Boston. Birkhäuser Boston Inc.
|
| [2] |
AntonelliP, MarahrensD, SparberC. On the Cauchy problem for nonlinear Schrödinger equations with rotation. Dyn. Syst., 2012, 32(3): 703-715
|
| [3] |
BarbuV, RöcknerM, ZhangD. Stochastic nonlinear Schrödinger equations. Nonlinear Anal.: Theory Methods Appl., 2016, 136: 168-194
|
| [4] |
BarbuV, RöcknerM, ZhangD. The stochastic logarithmic Schrödinger equation. J. Math. Pures Appl., 2017, 107: 123-149
|
| [5] |
BrzezniakZ, MilletA. On the stochastic Strichartz estimates and the stochastic nonlinear Schrödinger equation on a compact Riemannian manifold. Potential Anal., 2014, 41(2): 269-315
|
| [6] |
BrzezniakZ, HornungF, WeisL. Martingale solutions for the stochastic nonlinear Schrödinger equation in the energy space. Probab. Theory Related Fields, 2019, 174: 1273-1338
|
| [7] |
CarlesR. Nonlinear Schrödinger equation with time dependent potential. Commun. Math. Sci., 2011, 9(4): 937-964
|
| [8] |
Cazenave, T.: Semilinear Schrödinger Equations, Courant Lect. Notes Math., vol. 10, American Mathematical Society, Providence, RI (2003)
|
| [9] |
Da Prato, G., Zabczyk, J.: Stochastic Equations in Infinite Dimensions. Cambridge University Press (2014)
|
| [10] |
de Bouard, A., Fukuizumi, R.: Representation formula for stochastic Schrödinger evolution equations and applications. Nonlinearity 25(11), 2993–3022 (2012)
|
| [11] |
de BouardA, DebusscheA. A stochastic nonlinear Schrödinger equation with multiplicative noise. Commun. Math. Phys., 1999, 205(1): 161-181
|
| [12] |
de BouardA, DebusscheA. The stochastic nonlinear Schördinger equation in $H^1$. Stoch. Anal. Appl., 2003, 21(1): 97-126
|
| [13] |
DebusscheA, TsutsumiY. 1D quintic nonlinear Schrödinger equation with white noise dispersion. J. Math. Pures Appl. (9), 2011, 96(4): 363-376
|
| [14] |
Kato, T.: Schrödinger, Nonlinear, equations, Schrödinger Operators, Sønderberg, 1988, Lecture Notes in Physics, vol. 345. Springer, Berlin 1989, 218–263
|
| [15] |
LinaresF, PonceGIntroduction to Nonlinear Dispersive Equations, 2009, Springer. Universitext.
|
| [16] |
MadisonKW, ChevyF, WohllebenW, DalibardJl. Vortex formation in a stirred Bose–Einstein condensate. Phys. Rev. Lett., 2000, 84(5): 806-809
|
| [17] |
MadisonKW, ChevyF, WohllebenW, BretinV, DalibardJl. Stationary states of a rotating Bose–Einstein condensate: routes to vortex nucleation. Phys. Rev. Lett., 2001, 86(20): 4443-4446
|
| [18] |
MatthewsMR, AndersonBP, HaljanPC, HallDS, WiemanCE, CornellEA. Vortices in a Bose–Einstein condensate. Phys. Rev. Lett., 1999, 83: 2498-2501
|
| [19] |
StockS, BattelierB, BretinV, HadzibabicZ, DalibardJ. Boseeinstein condensates in fast rotation. Laser Phys. Lett., 2005, 2(6): 275-284
|
| [20] |
YajimaK. Schrödinger evolution equations with magnetic fields. J. d’Anal. Math., 1991, 56(1): 29-76
|
| [21] |
Zhang, D.: Stochastic nonlinear Schrödinger equation (Ph.D. thesis), Universiti at Bielefeld, (2014), http://pub.unibielefeld.de/publication/2661288
|
Funding
National Natural Science Foundation of China-China Academy of General Technology Joint Fund for Basic Research(11971456, 11721101)
School Start-up Fund (USTC)(KY0010000036)
the Fundamental Research Funds for the Central Universities(WK3470000016)
RIGHTS & PERMISSIONS
School of Mathematical Sciences, University of Science and Technology of China and Springer-Verlag GmbH Germany, part of Springer Nature