The Optimization Problem for Functions of Bounded Variation
Wan Li , Shuang Mou , Baocheng Zhu
Communications in Mathematics and Statistics ›› : 1 -27.
The Optimization Problem for Functions of Bounded Variation
For a function of bounded variation f in
Function of bounded variation / John ellipsoid / Jensen’s inequality
| [1] |
Ai, W., Huang, Q.: The Lp\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$L_p$$\end{document} John ellipsoids for general measures. Geom. Dedicata 217, 17 (2023) |
| [2] |
Ball, K.: Volumes of sections of cubes and related problems, Geometric Aspects of Functional Analysis (1987-88), Lecture Notes in Mathematics, 1376, Springer, Berlin, 251–260 (1989) |
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
Evans, L.C., Gariepy, R.F.: Measure Theory and Fine Properties of Functions, Revised Textbooks in Mathematics, CRC Press, Boca Raton, FL (2015) |
| [7] |
|
| [8] |
Gardner, R.J.: Geometric Tomography, 2nd edn, Encyclopedia of Mathematics and its Applications, 58. Cambridge University Press, New York (2006) |
| [9] |
|
| [10] |
|
| [11] |
Gruber, P.M.: Convex and Discrete Geometry, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 336, Springer, Berlin (2007) |
| [12] |
|
| [13] |
|
| [14] |
Henk, M.: Löwner–John ellipsoids. Doc. Math., 95–106 (2012) |
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
John, F.: Extremum problems with inequalities as subsidiary conditions, In: Studies and Essays Presented to R. Courant on his 60th Birthday, Interscience Publishers, Inc., New York, 187–204 (1948) |
| [20] |
Klartag, B.: On John-type Ellipsoids, Geometric Aspects of Functional Analysis, Lecture Notes in Math. Springer, Berlin 1850, 149–158 (2004) |
| [21] |
|
| [22] |
|
| [23] |
Lieb, E.H., Loss, M.: Analysis, 2nd edn, Graduate Studies in Mathematics, American Mathematical Society, Providence, RI (2001) |
| [24] |
Lindenstrauss, J., Milman, V.: The Local Theory of Normed Spaces and Its Applications to Convexity, pp. 1149–1220. North-Holland, Amsterdam, Handbook of Convex Geometry (1993) |
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
Lutwak, E.: The Brunn–Minkowski–Firey Theory. I. Mixed Volumes and the Minkowski Problem. J. Differ. Geom., 38, 131–150 (1993) |
| [31] |
Lutwak, E.: The Brunn–Minkowski–Firey Theory. II. Affine and Geominimal Surface Areas. Adv. Math. 118, 244–294 (1996) |
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
Lutwak, E., Yang, D., Zhang, G.: Optimal Sobolev Norms and the Lp\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$L^p$$\end{document} Minkowski Problem. Int. Math. Res. Not., 62987 (2006) |
| [36] |
|
| [37] |
|
| [38] |
|
| [39] |
Maresch, G., Schuster, F.: The sine transform of isotropic measures. Int. Math. Res. Not., 717–739 (2012) |
| [40] |
Milman, V.D., Pajor, A.: Isotropic Position and Inertia Ellipsoids and Zonoids of the Unit Ball of a Normed n\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$n$$\end{document}-dimensional Space, Geometric Aspects of Functional Analysis (1987–88), Lecture Notes in Mathematics, Springer. New York 1376, 64–104 (1989) |
| [41] |
|
| [42] |
Pisier, G.: The Volume of Convex Bodies and Banach Geometry. Cambridge University Press, Cambridge (1989) |
| [43] |
Schneider, R.: Convex Bodies: The Brunn–Minkowski Theory, 2nd edn, Cambridge University Press, Cambridge, Encyclopedia Math. Appl. (2014) |
| [44] |
|
| [45] |
|
| [46] |
|
| [47] |
|
| [48] |
|
| [49] |
|
| [50] |
|
School of Mathematical Sciences, University of Science and Technology of China and Springer-Verlag GmbH Germany, part of Springer Nature
/
| 〈 |
|
〉 |