The Optimization Problem for Functions of Bounded Variation

Wan Li , Shuang Mou , Baocheng Zhu

Communications in Mathematics and Statistics ›› : 1 -27.

PDF
Communications in Mathematics and Statistics ›› : 1 -27. DOI: 10.1007/s40304-025-00449-2
Article

The Optimization Problem for Functions of Bounded Variation

Author information +
History +
PDF

Abstract

For a function of bounded variation f in

Rn
, we consider the optimization problem of affine total variation, subject to a constraint on the LYZ body
f
under affine transformations, along with its dual problem. As applications, we also derive properties of the solutions to the related optimization problem, as well as properties of the LYZ body.

Keywords

Function of bounded variation / John ellipsoid / Jensen’s inequality

Cite this article

Download citation ▾
Wan Li, Shuang Mou, Baocheng Zhu. The Optimization Problem for Functions of Bounded Variation. Communications in Mathematics and Statistics 1-27 DOI:10.1007/s40304-025-00449-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ai, W., Huang, Q.: The Lp\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$L_p$$\end{document} John ellipsoids for general measures. Geom. Dedicata 217, 17 (2023)

[2]

Ball, K.: Volumes of sections of cubes and related problems, Geometric Aspects of Functional Analysis (1987-88), Lecture Notes in Mathematics, 1376, Springer, Berlin, 251–260 (1989)

[3]

BallK . Volume ratios and a reverse isoperimetric inequality. J. Lond. Math. Soc., 1991, 44: 351-359.

[4]

DaiJ, MouS. The minimal affine total variation on BV(Rn)\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$BV(\mathbb{R} ^n)$$\end{document}. Adv. Appl. Math., 2023, 147. 102504

[5]

DanzerL, LaugwitzD, LenzH. Über das Löwnersche Ellipsoid und sein Analogon unter den einem Eikörper einbeschriebenen Ellipsoiden. Arch. Math., 1957, 8: 214-219.

[6]

Evans, L.C., Gariepy, R.F.: Measure Theory and Fine Properties of Functions, Revised Textbooks in Mathematics, CRC Press, Boca Raton, FL (2015)

[7]

FangN, ZhouJ. LYZ ellipsoid and Petty projection body for log-concave functions. Adv. Math., 2018, 340: 914-959.

[8]

Gardner, R.J.: Geometric Tomography, 2nd edn, Encyclopedia of Mathematics and its Applications, 58. Cambridge University Press, New York (2006)

[9]

GardnerRJ, HugD, WeilW, YeD. The dual Orlicz–Brunn–Minkowski theory. J. Math. Anal. Appl., 2015, 430: 810-829.

[10]

GiannopoulosAA, MilmanVD. Extremal problems and isotropic positions of convex bodies. Israel J. Math., 2000, 117: 29-60.

[11]

Gruber, P.M.: Convex and Discrete Geometry, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 336, Springer, Berlin (2007)

[12]

GuoL, LengG. Volume inequalities for the Lp\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$L_p$$\end{document}-sine transform of isotropic measures. Bull. Korean Math. Soc., 2015, 52: 837-849.

[13]

HardyGH, LittlewoodJE, PólyaGInequalities, 1952CambridgeCambridge University Press

[14]

Henk, M.: Löwner–John ellipsoids. Doc. Math., 95–106 (2012)

[15]

HuJ, XiongG. The logarithmic John ellipsoid. Geom. Dedicata, 2018, 197: 33-48.

[16]

HuJ, XiongG, ZouD. On mixed Lp\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$L_p$$\end{document} John ellipsoids. Adv. Geom., 2019, 19: 297-312.

[17]

HuangQ, LiA. Optimal Sobolev norms in the affine class. J. Math. Anal. Appl., 2016, 436: 568-585.

[18]

HuangQ, LiA. A characterization of minimal Orlicz–Sobolev norms in the affine class. J. Math. Anal. Appl., 2018, 460: 703-713.

[19]

John, F.: Extremum problems with inequalities as subsidiary conditions, In: Studies and Essays Presented to R. Courant on his 60th Birthday, Interscience Publishers, Inc., New York, 187–204 (1948)

[20]

Klartag, B.: On John-type Ellipsoids, Geometric Aspects of Functional Analysis, Lecture Notes in Math. Springer, Berlin 1850, 149–158 (2004)

[21]

LewisDR. Ellipsoids defined by Banach ideal norms. Mathematika, 1979, 26: 18-29.

[22]

LiW, ZhuB. The affine convex Lorentz–Sobolev inequalities. J. Geom. Anal., 2024, 34: 30.

[23]

Lieb, E.H., Loss, M.: Analysis, 2nd edn, Graduate Studies in Mathematics, American Mathematical Society, Providence, RI (2001)

[24]

Lindenstrauss, J., Milman, V.: The Local Theory of Normed Spaces and Its Applications to Convexity, pp. 1149–1220. North-Holland, Amsterdam, Handbook of Convex Geometry (1993)

[25]

LuF, LengG. Volume inequalities for Lp\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$L_p$$\end{document}-John ellipsoids and their duals. Glasg. Math. J., 2007, 49: 469-477.

[26]

LuX, XiongG. The Lp\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$L_p$$\end{document} John ellipsoids for negative indices. Israel J. Math., 2023, 255: 155-176.

[27]

LudwigM. General affine surface areas. Adv. Math., 2010, 224: 2346-2360.

[28]

LudwigM, XiaoJ, ZhangG. Sharp convex Lorentz–Sobolev inequalities. Math. Ann., 2011, 350: 169-197.

[29]

LutwakE. Dual mixed volumes. Pacific J. Math., 1975, 58: 531-538.

[30]

Lutwak, E.: The Brunn–Minkowski–Firey Theory. I. Mixed Volumes and the Minkowski Problem. J. Differ. Geom., 38, 131–150 (1993)

[31]

Lutwak, E.: The Brunn–Minkowski–Firey Theory. II. Affine and Geominimal Surface Areas. Adv. Math. 118, 244–294 (1996)

[32]

LutwakE, YangD, ZhangG. A new ellipsoid associated with convex bodies. Duke Math. J., 2000, 104: 375-390.

[33]

LutwakE, YangD, ZhangG. Lp\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$L_{p}$$\end{document} affine isoperimetric inequalities. J. Differ. Geom., 2000, 56: 111-132.

[34]

LutwakE, YangD, ZhangG. Lp\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$L_p$$\end{document} John ellopsoids. Proc. London Math. Soc., 2005, 90: 497-520.

[35]

Lutwak, E., Yang, D., Zhang, G.: Optimal Sobolev Norms and the Lp\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$L^p$$\end{document} Minkowski Problem. Int. Math. Res. Not., 62987 (2006)

[36]

LutwakE, YangD, ZhangG. Orlicz projection bodies. Adv. Math., 2010, 223: 220-242.

[37]

LutwakE, YangD, ZhangG. Orlicz centroid bodies. J. Differ. Geom., 2010, 84: 365-387.

[38]

MaT, WuD, FengY. (p,q)\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$(p, q)$$\end{document}-John ellipsoids. J. Geom. Anal., 2021, 31: 9597-9632.

[39]

Maresch, G., Schuster, F.: The sine transform of isotropic measures. Int. Math. Res. Not., 717–739 (2012)

[40]

Milman, V.D., Pajor, A.: Isotropic Position and Inertia Ellipsoids and Zonoids of the Unit Ball of a Normed n\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$n$$\end{document}-dimensional Space, Geometric Aspects of Functional Analysis (1987–88), Lecture Notes in Mathematics, Springer. New York 1376, 64–104 (1989)

[41]

PettyCM . Surface area of a convex body under affine transformations. Proc. Am. Math. Soc., 1961, 12: 824-828.

[42]

Pisier, G.: The Volume of Convex Bodies and Banach Geometry. Cambridge University Press, Cambridge (1989)

[43]

Schneider, R.: Convex Bodies: The Brunn–Minkowski Theory, 2nd edn, Cambridge University Press, Cambridge, Encyclopedia Math. Appl. (2014)

[44]

SchusterF, WeberndorferM. Volume inequalities for asymmetric Wulff shapes. J. Differ. Geom., 2012, 92: 263-283.

[45]

WangT. The affine Sobolev–Zhang inequality on BV(Rn)\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$BV(\mathbb{R} ^n)$$\end{document}. Adv. Math., 2012, 230: 2457-2473.

[46]

YuW, LengG, WuD. Dual Lp\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$L_p$$\end{document} John ellipsoids. Proc. Edinb. Math. Soc., 2007, 50: 737-753.

[47]

ZhangG. The affine Sobolev inequality. J. Differ. Geom., 1999, 53: 183-202.

[48]

ZhuB, ZhouJ, XuW. Dual Orlicz–Brunn–Minkowski theory. Adv. Math., 2014, 264: 700-725.

[49]

ZouD, XiongG. The Orlicz–John ellipsoids. Adv. Math., 2014, 265: 132-168.

[50]

ZouD, XiongG. The Orlicz–Legendre ellipsoids. J. Geom. Anal., 2016, 26: 2474-2502.

Funding

National Natural Science Foundation of China(12371060)

RIGHTS & PERMISSIONS

School of Mathematical Sciences, University of Science and Technology of China and Springer-Verlag GmbH Germany, part of Springer Nature

AI Summary AI Mindmap
PDF

140

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/