Asymptotic Stability for Non-equicontinuous Markov Semigroups

Fuzhou Gong , Yong Liu , Yuan Liu , Ziyu Liu

Communications in Mathematics and Statistics ›› : 1 -10.

PDF
Communications in Mathematics and Statistics ›› : 1 -10. DOI: 10.1007/s40304-025-00447-4
Article

Asymptotic Stability for Non-equicontinuous Markov Semigroups

Author information +
History +
PDF

Abstract

We prove that the asymptotic stability, also known as the weak mixing, is equivalent to a lower bound condition together with the eventual continuity. The latter is a form of weak regularity for Markov–Feller semigroups that generalizes the e-property. Additionally, we provide an example of an asymptotically stable Markov semigroup with essential randomness that does not satisfy the e-property.

Keywords

Markov–Feller semigroup / Asymptotic stability / E-property / Eventual continuity

Cite this article

Download citation ▾
Fuzhou Gong,Yong Liu,Yuan Liu,Ziyu Liu. Asymptotic Stability for Non-equicontinuous Markov Semigroups. Communications in Mathematics and Statistics 1-10 DOI:10.1007/s40304-025-00447-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

BessaihH, KapicaR, SzarekT. Criterion on stability for Markov processes applied to a model with jumps. Semigroup Forum, 2014, 88(1): 76-92

[2]

Da PratoG, ZabczykJ Stochastic Equations in Infinite Demensions, 2014 2 Cambridge Cambridge University Press

[3]

Glatt-HoltzN, MattinglyJC, RichardsG. On unique ergodicity in nonlinear stochastic partial differential equations. J. Stat. Phys., 2017, 166(3–4): 618-649

[4]

GongF, LiuY. Ergodicity and asymptotic stability of Feller semigroups on Polish metric spaces. Sci. China Math., 2015, 58(6): 1235-1250

[5]

HilleSC, SzarekT, ZiemlańskaMA. Equicontinuous families of Markov operators in view of asymptotic stability. C. R. Math. Acad. Sci. Paris, 2017, 355(12): 1247-1251

[6]

HorbaczK, MyjakJ, SzarekT. On stability of some general random dynamical system. J. Stat. Phys., 2005, 119(1–2): 35-60

[7]

HorbaczK, MyjakJ, SzarekT. Stability of random dynamical systems on Banach spaces. Positivity, 2006, 10(3): 517-538

[8]

JaroszewskaJ. On asymptotic equicontinuity of Markov transition functions. Statist. Probab. Lett., 2013, 83(3): 943-951

[9]

Kukulski, R., Kukulski, R., Wojewódka-Ścia̧żko, H.: The e-property of asymptotically stable Markov semigroups. Results Math. 79(3), 112–22 (2024). https://doi.org/10.1007/s00025-024-02134-2

[10]

Kukulski, R., Kukulski, R., Wojewódka-Ścia̧żko, H.: The e-property of asymptotically stable Markov-Feller operators. Colloq. Math. 165(2), 269–283 (2021). https://doi.org/10.4064/cm8165-6-2020

[11]

KulikA, ScheutzowM. Generalized couplings and convergence of transition probabilities. Probab. Theory Relat. Fields, 2018, 171(1–2): 333-376

[12]

LasotaA, SzarekT. Lower bound technique in the theory of a stochastic differential equation. J. Differ. Eqn., 2006, 231(2): 513-533

[13]

LiuY, LiuZ. Relation between the eventual continuity and the e-property for Markov-Feller semigroups. Acta Math. Appl. Sin. Engl. Ser., 2024, 40(1): 1-16

[14]

SzarekT. Feller processes on nonlocally compact spaces. Ann. Probab., 2006, 34(5): 1849-1863

[15]

SzarekT, WormDTH. Ergodic measures of Markov semigroups with the e-property. Ergodic Theory Dyn. Syst., 2012, 143(3): 1117-1135

Funding

National Natural Science Foundation of China(No. 11731009, 12231002)

National Key R & D Program of China(No. 2020YFA0712700)

Key Laboratory of Random Complex Structures and Data Sciences, Mathematics and Systems Science, Chinese Academy of Sciences(No. 2008DP173182)

RIGHTS & PERMISSIONS

School of Mathematical Sciences, University of Science and Technology of China and Springer-Verlag GmbH Germany, part of Springer Nature

AI Summary AI Mindmap
PDF

101

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/