PDF
Abstract
In this paper, we consider the limit behavior of a sequence of deformed Hermitian–Yang–Mills metrics \documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$F_m$$\end{document}
on \documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$L^{\otimes m}$$\end{document}
where L is an ample line bundle over a Kähler surface \documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$(X, \omega )$$\end{document}
. If the cohomology class \documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$c_1(L)$$\end{document}
admits a solution of the J-equation, then we prove that \documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$F_m$$\end{document}
will converge to it. Furthermore, we also consider a boundary case. In this case, we prove that \documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$F_m$$\end{document}
will converge to a singular Kähler metric away from a finite number of curves with negative self-intersection on the surface.
Keywords
Deformed Hermitian–Yang–Mills metric
/
J-equation
/
Monge–Ampére equation
/
Kähler surface
Cite this article
Download citation ▾
Xiaoli Han, Xishen Jin.
Limit Behavior of Deformed Hermitian–Yang–Mills Metrics on Kähler Surfaces.
Communications in Mathematics and Statistics 1-9 DOI:10.1007/s40304-025-00445-6
| [1] |
ChenXX. On the lower bound of the Mabuchi energy and its application. Int. Math. Res. Not., 2000, 12: 607-623.
|
| [2] |
Collins, T., Jacob, A., Yau, S.-T.: (1,1)\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$(1,1)$$\end{document}-forms with specified Lagrangian phase: a priori estimates and algebraic obstructions, arxiv: 1508.01934, (2015)
|
| [3] |
ChenX, LiH. Stability of Kähler-Ricci flow. J. Geom. Anal., 2010, 20: 306-334.
|
| [4] |
CollinsT, XieD, YauS-TThe deformed Hermitian–Yang–Mills in geometry and physics, geometry and physics, 2018OxfordOxford Univ. Press69-90I
|
| [5] |
CollinsT, YauS-T. Moment maps, nonlinear PDE, and stability in mirror symmetry. Ann. PDE, 2021, 7111, 73.
|
| [6] |
DonaldsonSK. Moment maps and diffeomorphisms. Asian J. Math., 1999, 311-16.
|
| [7] |
EyssidieuxP , GuedjV, ZeriahiA. Viscosity solutions to degenerate ComplexMonge-Ampère equations. J. Amer. Math. Soc., 2009, 223607-639.
|
| [8] |
FangH, LaiMJ, SongJ, WeinkoveB. The J\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$J$$\end{document}-flow on Kähler surfaces: a boundary case. Anal. PDE, 2014, 7: 1.
|
| [9] |
HanXL, YamamotoH. A ε\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\varepsilon $$\end{document}-regularity theorem for line bundle mean curvature flow. Asian J. Math., 2022, 266737-776.
|
| [10] |
HanXL, JinXS. A rigid theorem for deformed Hermitian–Yang–Mills equation. Calc. Var. Partial Diff. Equ., 2021, 60113.
|
| [11] |
JacobA, YauS-T. A special Lagrangian type equation for holomorphic line bundle. Math. Ann., 2017, 3691869-898.
|
| [12] |
KolodziejS. The complex Monge–Ampère equation. Acta Math., 1998, 180169-117.
|
| [13] |
LeungN-C, YauS-T, ZaslowE. From special Lagrangian to Hermitian–Yang–Mills via Fourier–Futaki transform. Adv. Theor. Math. Phys., 2000, 4: 1319-1341.
|
| [14] |
Marino, M., Minasian, R., Moore, G., Stromiger, A.: Nonlinear instantons from supersymmetric p-Branes, arXiv:hep-th/9911206, (1999)
|
| [15] |
PingaliVP. The deformed Hermitian Yang–Mills equation on three-folds. Anal. PDE, 2022, 154921-935.
|
| [16] |
SchlitzerE, StoppaJ. Deformed Hermitian Yang–Mills connections, extended Gauge group and scalar curvature. J. Lond. Math. Soc., 2021, 1042770-802.
|
| [17] |
SongJ, WeinkoveB. The convergenve and sigularities of the J-flow with applications to the Mabuchi energy. Commun. Pure Appl. Math, 2008, 612210-229.
|
| [18] |
TakahashiR. Collapsing of the line bundle mean curvature flow on Kähler surfaces. Calc. Var. Partial Diff. Eq., 2021, 60127, 18.
|
| [19] |
ZhangZ . On degenerate Monge–Ampère equations over closed Käler manifolds. Int. Math. Res. Not, 2006, 18: 63640
|
Funding
National Key R&D Program of China(2022YFA1005400)
NFSC(12031017)
RIGHTS & PERMISSIONS
School of Mathematical Sciences, University of Science and Technology of China and Springer-Verlag GmbH Germany, part of Springer Nature
Just Accepted
This article has successfully passed peer review and final editorial review, and will soon enter typesetting, proofreading and other publishing processes. The currently displayed version is the accepted final manuscript. The officially published version will be updated with format, DOI and citation information upon launch. We recommend that you pay attention to subsequent journal notifications and preferentially cite the officially published version. Thank you for your support and cooperation.