PDF
Abstract
In this paper, we consider the limit behavior of a sequence of deformed Hermitian–Yang–Mills metrics \documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$F_m$$\end{document}
on \documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$L^{\otimes m}$$\end{document}
where L is an ample line bundle over a Kähler surface \documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$(X, \omega )$$\end{document}
. If the cohomology class \documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$c_1(L)$$\end{document}
admits a solution of the J-equation, then we prove that \documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$F_m$$\end{document}
will converge to it. Furthermore, we also consider a boundary case. In this case, we prove that \documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$F_m$$\end{document}
will converge to a singular Kähler metric away from a finite number of curves with negative self-intersection on the surface.
Keywords
Deformed Hermitian–Yang–Mills metric
/
J-equation
/
Monge–Ampére equation
/
Kähler surface
Cite this article
Download citation ▾
Xiaoli Han, Xishen Jin.
Limit Behavior of Deformed Hermitian–Yang–Mills Metrics on Kähler Surfaces.
Communications in Mathematics and Statistics 1-9 DOI:10.1007/s40304-025-00445-6
| [1] |
ChenXX. On the lower bound of the Mabuchi energy and its application. Int. Math. Res. Not., 2000, 12: 607-623.
|
| [2] |
Collins, T., Jacob, A., Yau, S.-T.: (1,1)\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$(1,1)$$\end{document}-forms with specified Lagrangian phase: a priori estimates and algebraic obstructions, arxiv: 1508.01934, (2015)
|
| [3] |
ChenX, LiH. Stability of Kähler-Ricci flow. J. Geom. Anal., 2010, 20: 306-334.
|
| [4] |
CollinsT, XieD, YauS-TThe deformed Hermitian–Yang–Mills in geometry and physics, geometry and physics, 2018OxfordOxford Univ. Press69-90I
|
| [5] |
CollinsT, YauS-T. Moment maps, nonlinear PDE, and stability in mirror symmetry. Ann. PDE, 2021, 7111, 73.
|
| [6] |
DonaldsonSK. Moment maps and diffeomorphisms. Asian J. Math., 1999, 311-16.
|
| [7] |
EyssidieuxP , GuedjV, ZeriahiA. Viscosity solutions to degenerate ComplexMonge-Ampère equations. J. Amer. Math. Soc., 2009, 223607-639.
|
| [8] |
FangH, LaiMJ, SongJ, WeinkoveB. The J\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$J$$\end{document}-flow on Kähler surfaces: a boundary case. Anal. PDE, 2014, 7: 1.
|
| [9] |
HanXL, YamamotoH. A ε\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\varepsilon $$\end{document}-regularity theorem for line bundle mean curvature flow. Asian J. Math., 2022, 266737-776.
|
| [10] |
HanXL, JinXS. A rigid theorem for deformed Hermitian–Yang–Mills equation. Calc. Var. Partial Diff. Equ., 2021, 60113.
|
| [11] |
JacobA, YauS-T. A special Lagrangian type equation for holomorphic line bundle. Math. Ann., 2017, 3691869-898.
|
| [12] |
KolodziejS. The complex Monge–Ampère equation. Acta Math., 1998, 180169-117.
|
| [13] |
LeungN-C, YauS-T, ZaslowE. From special Lagrangian to Hermitian–Yang–Mills via Fourier–Futaki transform. Adv. Theor. Math. Phys., 2000, 4: 1319-1341.
|
| [14] |
Marino, M., Minasian, R., Moore, G., Stromiger, A.: Nonlinear instantons from supersymmetric p-Branes, arXiv:hep-th/9911206, (1999)
|
| [15] |
PingaliVP. The deformed Hermitian Yang–Mills equation on three-folds. Anal. PDE, 2022, 154921-935.
|
| [16] |
SchlitzerE, StoppaJ. Deformed Hermitian Yang–Mills connections, extended Gauge group and scalar curvature. J. Lond. Math. Soc., 2021, 1042770-802.
|
| [17] |
SongJ, WeinkoveB. The convergenve and sigularities of the J-flow with applications to the Mabuchi energy. Commun. Pure Appl. Math, 2008, 612210-229.
|
| [18] |
TakahashiR. Collapsing of the line bundle mean curvature flow on Kähler surfaces. Calc. Var. Partial Diff. Eq., 2021, 60127, 18.
|
| [19] |
ZhangZ . On degenerate Monge–Ampère equations over closed Käler manifolds. Int. Math. Res. Not, 2006, 18: 63640
|
Funding
National Key R&D Program of China(2022YFA1005400)
NFSC(12031017)
RIGHTS & PERMISSIONS
School of Mathematical Sciences, University of Science and Technology of China and Springer-Verlag GmbH Germany, part of Springer Nature