On the Robust Nonparametric Regression Estimate in the Single Functional Index Model

Billal Bentata , Said Attaoui , Elias Ould-Saïd

Communications in Mathematics and Statistics ›› 2025, Vol. 13 ›› Issue (6) : 1533 -1565.

PDF
Communications in Mathematics and Statistics ›› 2025, Vol. 13 ›› Issue (6) :1533 -1565. DOI: 10.1007/s40304-025-00444-7
Article
research-article

On the Robust Nonparametric Regression Estimate in the Single Functional Index Model

Author information +
History +
PDF

Abstract

In this work, we construct and study a family of robust nonparametric estimators for a regression function based on kernel methods. The data are functional, independent and identically distributed, and are linked to a single-index model. Under general conditions, we establish the pointwise and uniform almost complete convergence, as well as the asymptotic normality of the estimator. We explicitly derive the asymptotic variance and, as a result, provide confidence bands for the theoretical parameter. A simulation study is conducted to illustrate the proposed methodology.

Keywords

Asymptotic normality / Functional data / Functional Hilbert space / Kernel estimate / Nonparametric model / Robust regression / Simulation study / Single functional index model / Uniform almost complete convergence / 62G05 / 62G20 / 62H12

Cite this article

Download citation ▾
Billal Bentata, Said Attaoui, Elias Ould-Saïd. On the Robust Nonparametric Regression Estimate in the Single Functional Index Model. Communications in Mathematics and Statistics, 2025, 13(6): 1533-1565 DOI:10.1007/s40304-025-00444-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Aït Saidi A, Ferraty F, Kassa R, Vieu P. Cross-validated estimation in the single functional index model. Statistics, 2008, 42: 475-494

[2]

Attaoui S, Laksaci A, Ould-Saïd E. A note on the conditional density estimate in the single functional index model. Stat. Probab. Lett., 2011, 81: 45-53

[3]

Attaoui S. On the nonparametric conditional density and mode estimates in the single functional index model with strongly mixing data. Sankhya Indian J. Statist., 2014, 76: 356-378

[4]

Attaoui S. Strong uniform consistency rates and asymptotic normality of conditional density estimator in the single functional index modeling for time series data. J. AStA Adv. Stat. Anal., 2014, 98: 257-286

[5]

Attaoui S, Laksaci A, Ould-Saïd E. Ould Saïd E, Ouassou I, Rachdi M. Asymptotic results for an M\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$M$$\end{document}-estimator of the regression function for quasi-associated processes. Functional Statistics and Applications, 2015, Switzerland, Springer

[6]

Attouch M, Laksaci A, Ould-Saïd E. Asymptotic normality of a robust estimator of the regression function for functional time series data. J. Korean Stat. Soc., 2010, 39: 489-500

[7]

Azzedine N, Laksaci A, Ould-Saïd E. On robust nonparametric regression estimation for functional regressor. Stat. Probab. Lett., 2008, 78: 3216-3221

[8]

Bennett G. Probability inequalities for sum of independent random variables. J. Am. Statist. Assoc., 1962, 57: 33-45

[9]

Boente G, Fraiman R. Robust nonparametric regression estimation. J. Multivar. Anal., 1989, 29: 180-198

[10]

Bongiorno, E-G., Salinelli, E., Goia, A., Vieu, P.: Contributions in Infinite Dimensional Statistics and Related Topics. Società Editrice Esculapio (2014)

[11]

Cadre H. Convergence estimators for the L1\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$L_1$$\end{document}-median of a Banach valued random variable. Statistic, 2001, 35(4): 509-521

[12]

Cardot H, Crambe C, Sarda P. Spline estimation of conditional quantities for functional covariates. C. R. Math., 2005, 339(2): 141-144

[13]

Collomb G, Härdle W. Strong uniform convergence rates in robust nonparametric time series analysis and prediction: kernel regression estimation from dependent observations. Stoch. Proc. Appl., 1986, 23: 77-89

[14]

Crambe C , Delsol L, Laksaci A. Dabo-Niang S, Ferraty F. Robust nonparametric estimation for functional data. Functional and Operatorial Statistics Contribution to Statistics, 2008, Heidelberg, Physica-Verlag

[15]

Davies P. Aspects of robust linear regression. Ann. Stat., 2009, 21: 1843-1899

[16]

Ferraty F, Vieu P. Nonparametric Functional Data Analysis, Theory and Practices, 2006, Berlin, Springer

[17]

Ferraty F, Mas A, Vieu P. Advances in nonparametric regression for functional variables. Aust. N. Z. J. Stat., 2007, 49: 1-20

[18]

Ferraty F, Vieu P. Erratum: non-parametric models for functional data, with application in regression, time-series prediction and curve estimation. J. Nonparametr. Stat, 2008, 20: 187-189

[19]

Györfi L, Kohler M, Krzyzak A, Walk H. A Distribution-Free Theory of Nonparametric Regression, 2002, New York, Springer

[20]

Hampel F, Ronchetti E, Rousseeuw P, Stahel W. Robust Statistics: The Approach Based on Influence Functions, 1986, New York, Wiely

[21]

Horváth, L., Kokoszka, P.: Inference for Functional Data with Applications. Springer series in statistics, vol. 200. Springer, New York (2012)

[22]

Huber P. Robust Statistics, 1981, New York, Wiely

[23]

Laïb N, Ould Saïd E. A robust nonparametric estimation of the autoregression function under an ergodic hypothesis. Canad. J. Stat., 2000, 28: 817-828

[24]

Mendes, B., Tyler, D.: Constrained M\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$M$$\end{document}-estimation for regression. In: Rieder, H. (ed), Robust Statistics, Data Analysis, and Computer Intensive Methods: In Honor of Peter Huber 60th Birthday, pp. 299–320, Lecture Notes in Statistics. Springer, New York (1996)

[25]

Nadaraya EA. On estimating regression. Theory Probab. Appl., 1964, 9: 141-142

[26]

Ouassou I, Rachdi M. Regression operator estimation by delta-sequences method for functional data and its applications. J. AStA Adv. Stat. Anal., 2012, 96: 451-465

[27]

Rachdi M, Vieu P. Nonparametric regression for functional data: automatic smoothing parameter selection. J. Stat. Plan. Inf., 2007, 137: 2784-2801

[28]

Ramsay JO, Silverman BW. Applied Functional Data Analysis: Methode and Case Studies, 2002, New York, Springer

[29]

Ramsay, J.O., Silverman, B.W.: Functional Data Analysis, 2nd edn (2005)

[30]

Rousseeuw PJ. Least median of squares regression. J. Am. Stat. Assoc., 1984, 79: 871-880

[31]

Sen A, Srivastava M. Regression Analysis: Theory, Methods and Applications, 1990, Berlin, Springer

[32]

Serfling RJ. Approximation Theorems of Mathematical Statistics, 1980, Berlin, Springer

[33]

Simonoff JS. Smoothing Methods in Statistics, 1996, Berlin, Springer

[34]

Vapnik VN. Statistical learning theory. Ann. Stat., 1999, 15: 642-656

[35]

Watson GS. Smooth regression analysis. Sankhya Ser. A, 1964, 26: 359-372

[36]

Yohai V. High breakdown-point and high efficiency robust estimates for regression. Ann. Stat., 1987, 15: 642-656

RIGHTS & PERMISSIONS

School of Mathematical Sciences, University of Science and Technology of China and Springer-Verlag GmbH Germany, part of Springer Nature

PDF

384

Accesses

0

Citation

Detail

Sections
Recommended

/