Functional Beta Regression Model in Alzheimer’s Disease Studies

Mengyu Zhang , Rongjie Liu , Chao Huang , Fengchang Xie

Communications in Mathematics and Statistics ›› : 1 -28.

PDF
Communications in Mathematics and Statistics ›› :1 -28. DOI: 10.1007/s40304-025-00443-8
Article
research-article

Functional Beta Regression Model in Alzheimer’s Disease Studies

Author information +
History +
PDF

Abstract

Scalar-on-function linear regression models are usually considered to bridge the connection between scalar clinical outcome responses and functional predictors. However, existing methods are suffering from two primary challenges, i.e., additional constraints (e.g., boundedness) on responses and feasibility in discovering meaningful imaging biomarkers. In this paper, we propose a functional beta regression model to investigate the relationship between bounded responses and both clinical and functional covariates, which can successfully address the challenge of boundness of the data mentioned above. Specifically, we develop a regularized wavelet basis method, where the coefficient function is represented through wavelet bases and an adaptive Lasso penalty is incorporated to detect the regions with significant effects. Furthermore, to solve the issues in choosing the adaptive weights, we propose a new strategy based on the functional principal component beta regression (FPCBR). The asymptotic property of the estimation procedure is investigated. The finite-sample performance of our proposed method is assessed by using Monte Carlo simulations and a real data example from the Alzheimer’s disease study.

Keywords

Functional beta regression / Bounded response / Wavelet adaptive Lasso / Alzheimer’s disease / 62J07 / 62H25 / 62J05

Cite this article

Download citation ▾
Mengyu Zhang, Rongjie Liu, Chao Huang, Fengchang Xie. Functional Beta Regression Model in Alzheimer’s Disease Studies. Communications in Mathematics and Statistics 1-28 DOI:10.1007/s40304-025-00443-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

BoggessA, NarcowichFJA First Course in Wavelets with Fourier Analysis, 20092Hoboken. Wiley.

[2]

CiarleglioA, OgdenRT. Wavelet-based scalar-on-function finite mixture regression models. Comput. Stat. Data Anal., 2016, 93: 86-96

[3]

Cribari-NetoF, ZeileisA. Beta regression in r. J. Stat. Softw., 2010, 34: 1-24

[4]

Dai, X., Hadjipantelis, P., Ji, H., et al.: fdapace: functional data analysis and empirical dynamics. R package version 0.3. 0 (2017)

[5]

Di PaolaM, SpallettaG, CaltagironeC. In vivo structural neuroanatomy of corpus callosum in Alzheimer’s disease and mild cognitive impairment using different mri techniques: a review. J. Alzheimers Dis., 2010, 20(1): 67-95

[6]

FanJ. Local linear regression smoothers and their minimax efficiencies. Ann. Stat., 1993, 21(1): 196-216

[7]

FanJ, PengH. Nonconcave penalized likelihood with a diverging number of parameters. Ann. Stat., 2004, 32(3): 928-961

[8]

FengX, LiT, SongX, et al.. Bayesian scalar on image regression with nonignorable nonresponse. J. Am. Stat. Assoc., 2020, 115(532): 1574-1597.

[9]

FerrariS, Cribari-NetoF. Beta regression for modelling rates and proportions. J. Appl. Stat., 2004, 31(7): 799-815

[10]

FriedmanJ, HastieT, HöflingH, et al.. Pathwise coordinate optimization. Ann. Appl. Stat., 2007, 1(2): 302-332

[11]

GhosalR, VarmaVR, VolfsonD, et al.. Distributional data analysis via quantile functions and its application to modeling digital biomarkers of gait in Alzheimer’s Disease. Biostatistics, 2021, 24(3): 539-561.

[12]

HuangJ, MaS, ZhangC-H. Adaptive Lasso for sparse high-dimensional regression models. Stat. Sin., 2008, 18(4): 1603-1618

[13]

HuangC, StynerM, ZhuH. Clustering high-dimensional landmark-based two-dimensional shape data. J. Am. Stat. Assoc., 2015, 110(511): 946-961

[14]

HuangC, ThompsonP, WangY, et al.. Fgwas: functional genome wide association analysis. Neuroimage, 2017, 159: 107-121

[15]

JadhavS, TekweCD, LuanY. A function-based approach to model the measurement error in wearable devices. Stat. Med., 2022, 41(24): 4886-4902.

[16]

JamesGM. Generalized linear models with functional predictors. J. R. Stat. Soc. Ser. B (Stat. Methodol.), 2002, 64(3): 411-432.

[17]

KimJ-M, KimN-K, JungY, et al.. Patent data analysis using functional count data model. Soft. Comput., 2019, 23(18): 8815-8826

[18]

LiF, ZhangT, WangQ, et al.. Spatial Bayesian variable selection and grouping for high-dimensional scalar-on-image regression. Ann. Appl. Stat., 2015, 9: 687-713

[19]

LiJ, HuangC, ZhuH, et al.. A functional varying-coefficient single-index model for functional response data. J. Am. Stat. Assoc., 2017, 112(519): 1169-1181

[20]

LiT, SongX, ZhangY, et al.. Clusterwise functional linear regression models. Comput. Stat. Data Anal., 2021, 158: 107-192

[21]

MallatSGA Wavelet Tour of Signal Processing: The Sparse Way, 20093Washington. Academic Press.

[22]

MartínezS, GiraldoR, LeivaV. Birnbaum-Saunders functional regression models for spatial data. Stoch. Env. Res. Risk Assess., 2019, 33(10): 1765-1780

[23]

MorrisJS. Functional regression. Ann. Rev. Stat. Appl., 2015, 2(1): 321-359.

[24]

MousaviSN, SørensenH. Multinomial functional regression with wavelets and Lasso penalization. Economet. Stat., 2017, 1: 150-166

[25]

MuellerSG, WeinerMW, ThalLJ, et al.. The Alzheimer’s disease neuroimaging initiative. Neuroimaging Clin. N. Am., 2005, 15(4): 869-77

[26]

MüllerH-G, StadtmüllerU. Generalized functional linear models. Ann. Stat., 2005, 33(2): 774-805

[27]

RamsayJO, GilesH, GravesSFunctional Data Analysis with R and MATLAB, 2009, Cham. Springer.

[28]

ReissPT, OgdenRT. Functional principal component regression and functional partial least squares. J. Am. Stat. Assoc., 2007, 102(479): 984-996

[29]

ReissPT, Todd OgdenR. Smoothing parameter selection for a class of semiparametric linear models. J. R. Stat. Soc. Ser. B (Stat. Methodol.), 2009, 71(2): 505-523

[30]

ReissPT, HuoL, ZhaoY, et al.. Wavelet-domain regression and predictive inference in psychiatric neuroimaging. Ann. Appl. Stat., 2015, 9(2): 1076-1101

[31]

ReissPT, GoldsmithJ, ShangHL, et al.. Methods for scalar-on-function regression. Int. Stat. Rev., 2017, 85(2): 228-249.

[32]

RoweAC, AbbottPC. Daubechies wavelets and mathematica. Comput. Phys., 1995, 9(6): 635-648

[33]

RyanJJ, KreinerDS, PaoloAM. Handedness of healthy elderly and patients with Alzheimer’s disease. Int. J. Neurosci., 2020, 130(9): 875-883.

[34]

WangM, WangX. Adaptive Lasso estimators for ultrahigh dimensional generalized linear models. Stat. Probab. Lett., 2014, 89: 41-50

[35]

WangJL, ChiouJM, MüllerHG. Functional data analysis. Ann. Rev. Stat. Appl., 2016, 3: 257-295

[36]

WangY, KongL, JiangB, et al.. Wavelet-based Lasso in functional linear quantile regression. J. Stat. Comput. Simul., 2019, 89(6): 1111-1130

[37]

WangY, LaiT, JiangB, et al.HeW, WangL, ChenJ, LinCD, et al.Functional Linear Regression for Partially Observed Functional Data, 2022, Cham. Springer. 137158

[38]

YaoF, MüllerH-G, WangJ-L. Functional data analysis for sparse longitudinal data. J. Am. Stat. Assoc., 2005, 100(470): 577-590

[39]

YaoF, FuY, LeeTC. Functional mixture regression. Biostatistics, 2011, 12(2): 341-353

[40]

YuD, ZhangL, MizeraI, et al.. Sparse wavelet estimation in quantile regression with multiple functional predictors. Comput. Stat. Data Anal., 2019, 136: 12-29

[41]

ZhaoY, OgdenRT, ReissPT. Wavelet-based Lasso in functional linear regression. J. Comput. Graph. Stat., 2012, 21(3): 600-617

[42]

ZhaoY, ChenH, OgdenRT. Wavelet-based weighted Lasso and screening approaches in functional linear regression. J. Comput. Graph. Stat., 2015, 24(3): 655-675

[43]

ZouH. The adaptive Lasso and its oracle properties. J. Am. Stat. Assoc., 2006, 101(476): 1418-1429

RIGHTS & PERMISSIONS

School of Mathematical Sciences, University of Science and Technology of China and Springer-Verlag GmbH Germany, part of Springer Nature

PDF

89

Accesses

0

Citation

Detail

Sections
Recommended

/