Bases of twisted wreath products

Xiaomeng Shi , Yin Liu , Guiyun Chen , Yanxiong Yan

Communications in Mathematics and Statistics ›› : 1 -13.

PDF
Communications in Mathematics and Statistics ›› :1 -13. DOI: 10.1007/s40304-024-00437-y
Article
research-article

Bases of twisted wreath products

Author information +
History +
PDF

Abstract

Finite quasiprimitive permutation groups of twisted wreath type are the finite permutation groups with a unique minimal normal subgroup which is non-abelian, non-simple and acts regularly. If T is a non-abelian simple group and P is a group that conveys transitive action on the set $\textbf{k}=\{1,2,\ldots ,k\}$ with $k\geqslant 2$, then every permutation group in this classification can be considered permutation isomorphic to $G=T^k{:}P$, a twisted wreath product acting on its base group $\Omega =T^k$. We prove that if $T\cong \textrm{A}_n,P\cong M^l{:}N\leqslant \textrm{S}_k$ with $M=\textrm{A}_s$ or classical group with dimensions less than or equal to $n-2$, $n\leqslant \{8,s,\ell \}$, then the base size of G is 2. Additionally, we demonstrate three possible values of the base size when P is semiprimitive on $\textbf{k}$ and G is quasiprimitive on $\Omega $.

Keywords

Quasiprimitive / Permutation group / Twisted wreath product / Base size / 20B05

Cite this article

Download citation ▾
Xiaomeng Shi, Yin Liu, Guiyun Chen, Yanxiong Yan. Bases of twisted wreath products. Communications in Mathematics and Statistics 1-13 DOI:10.1007/s40304-024-00437-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

AschbacherM, GuralnickR. Some applications of the first cohomology group. J. Algebra, 1984, 90: 446-460

[2]

BaddeleyRW. Primitive permutation groups with a regular nonabelian normal subgroup. Proc. Lond. Math. Soc., 1993, 67: 547-595

[3]

BaileyRF, CameronPJ. Base size, metric dimension and other invariants of groups and graphs. Bull. Lond. Math. Soc., 2011, 43: 209-242

[4]

BurnessTC. On the base sizes for actions of finite classical groups. J. Lond. Math. Soc., 2007, 75: 545-562

[5]

BurnessTC. Base sizes for primitive groups with soluble stabilisers. Algebra Number Theory, 2021, 15: 1755-1807

[6]

BurnessTC, GuralnickRM, SaxlJ. On base sizes for symmetric groups. Bull. Lond. Math. Soc., 2011, 43: 386-391

[7]

BurnessTC, GuralnickRM, SaxlJ. Base sizes for ${\cal{S} }$-actions of finite classical groups. Isr. J. Math., 2014, 199: 711-756

[8]

BurnessTC, LiebackMW, ShalevA. Base sizes for simple groups and a conjecture of Cameron. Proc. Lond. Math. Soc., 2009, 98: 116-162

[9]

BurnessTC, O’BrienEA, WilsonRA. Base sizes for sporadic simple groups. Isr. J. Math., 2010, 177: 307-333

[10]

CameronPJLiebeckMW, SaxlJ. Some open problems on permutation groups, Groups, combinatorics and geometry. London Mathematical Society Lecture Note Series, 1992, Cambridge. Cambridge University Press. 340350165

[11]

CameronPJ, KantorWM. Random permutations: some group-theoretic aspects. Combin. Probab. Comput., 1993, 2: 257-262

[12]

CameronPJ, NeumannPM, SaxlJ. On groups with no regular orbits on the set of subsets. Arch. Math., 1984, 43: 295-296

[13]

DevillersA, MorganL, HarperS. The distinguishing number of quasiprimitive and semiprimitive groups. Arch. Math., 2019, 113: 127-139

[14]

DixonJD, MortimerBPermutation Groups, 1996, New York. Springer-Verlag.

[15]

Duyan, H., Halasi, Z., A. Mar$\acute{o}$ti,: A proof of Pyber’s base size conjecture. Adv. Math. 331, 720–747 (2018)

[16]

FawcettJB. The base size of a primitive diagonal group. J. Algebra, 2013, 375: 302-321

[17]

Fawcett, J.B., M$\ddot{u}$ller, J., O’Brien, E.A., Wilson, R.A.: Regular orbits of sporadic simple groups. J. Algebra. 522, 61–79 (2019)

[18]

FawcettJB. Bases of twisted wreath products. J. Algebra, 2022, 607: 247-271

[19]

GoodwinDPM. Regular orbits of linear groups with an application to the k(GV)-problem, 1. J. Algebra, 2000, 227: 395-432

[20]

JamesJP. Partition actions of symmetric groups and regular bipartite graphs. Bull. Lond. Math. Soc., 2006, 38: 224-232

[21]

JamesJP. Two point stabilisers of partition actions of linear groups. J. Algebra, 2006, 297: 453-469

[22]

KleidmanP, LiebackMWThe Subgroup Structure of the Finite Classical Groups, 1990, New York. Cambridge University Press.

[23]

K$\ddot{o}$hler, C., Pahlings, H.: Regular orbits and the k(GV)-problem. In: Groups and Computation III: Proceedings of the International Conference at the Ohio State University, June 15–19, 1999, pp. 209–228 (2001)

[24]

LeeM. Regular orbits of quasisimple linear groups I. J. Algebra, 2021, 586: 1122-1194

[25]

LeeM. Regular orbits of quasisimple linear groups II. J. Algebra, 2021, 586: 643-717

[26]

LiebackMW, ShalevA. Simple groups, permutation groups, and probability. J. Am. Math. Soc., 1999, 12: 497-520

[27]

M$\ddot{u}$ller, J., Neunh$\ddot{o}$ffer, M., Wilson, R.A.: Enumerating big orbits and an application: B acting on the cosets of $Fi_{23}$. J. Algebra. 314, 75–96 (2007)

[28]

PraegerCE. An O’Nan Scott theorem for finite quasiprimitive permutation groups and an application to 2-arc transitive graphs. J. Lond. Math. Soc., 1993, 47: 227-239

[29]

SeressA. Primitive groups with no regular orbits on the set of subsets. Bull. Lond. Math. Soc., 1997, 29: 697-704

[30]

StroppelM. Locally compact groups with many automorphisms. J. Group Theory., 2001, 4: 427-455

Funding

National Science Foundation(Grant No. 12301030)

Natural Science Foundation of China(12071376)

Natural Science Foundation Project of Chongqing, Chongqing Science and Technology Commission(CSTB2024NSCQ-MSX0544)

Doctoral Through Train Scientific Research Project of Chongqing(sl202100000324)

RIGHTS & PERMISSIONS

School of Mathematical Sciences, University of Science and Technology of China and Springer-Verlag GmbH Germany, part of Springer Nature

PDF

132

Accesses

0

Citation

Detail

Sections
Recommended

/