PDF
Abstract
We consider the two-dimensional incompressible Euler equation
We are interested in the cases when the initial vorticity has the form
\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\omega _0=\omega _{0,\epsilon }+\omega _{0p,\epsilon }$$\end{document}
, where
\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\omega _{0,\epsilon }$$\end{document}
is concentrated near
M disjoint points
\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$p_m^0$$\end{document}
and
\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\omega _{0p,\epsilon }$$\end{document}
is a small perturbation term. We prove that for such initial vorticities, the solution
\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\omega (x,t)$$\end{document}
admits a decomposition
\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\omega (x,t)=\omega _{\epsilon }(x,t)+\omega _{p,\epsilon }(x,t)$$\end{document}
, where
\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\omega _{\epsilon }(x,t)$$\end{document}
remains concentrated near
M points
\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$p_m(t)$$\end{document}
and
\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\omega _{p,\epsilon }(x,t)$$\end{document}
remains small for
\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$t \in [0,T]$$\end{document}
. As a consequence of such decomposition, we are able to consider the initial vorticity of the form
\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\omega _0(x)=\sum _{m=1}^M \frac{\gamma _m}{\epsilon ^2}\eta (\frac{x-p_m^0}{\epsilon })$$\end{document}
, where we do not assume
\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\eta $$\end{document}
to have compact support. Finally, we prove that if
\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$p_m(t)$$\end{document}
remains separated for all
\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$t\in [0,+\infty )$$\end{document}
, then
\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\omega (x,t)$$\end{document}
remains concentrated near
M points at least for
\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$t \le c_0 |\log A_{\epsilon }|$$\end{document}
, where
\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$A_{\epsilon }$$\end{document}
is small and converges to 0 as
\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\epsilon \rightarrow 0$$\end{document}
.
Keywords
Point vortices
/
Vortex interaction
Cite this article
Download citation ▾
Dengjun Guo.
Stability of the Two-Dimensional Point Vortices in Euler Flows.
Communications in Mathematics and Statistics 1-42 DOI:10.1007/s40304-024-00436-z
| [1] |
Aref, H.: Point vortex dynamics: a classical mathematics playground. J. Math. Phys. 23, 48(6) (2007)
|
| [2] |
BertozziAL, MajdaAJ Vorticity and Incompressible Flow, 2002 Cambridge Cambridge University Press
|
| [3] |
ButtàP, MarchioroC. Long time evolution of concentrated Euler flows with planar symmetry. SIAM J. Math. Anal., 2018, 50: 735-760
|
| [4] |
DávilaJ, del PinoM, MussoM, WeiJ. Gluing methods for vortex dynamics in Euler flows. Arch. Ration. Mech. Anal., 2020, 235(3): 1467-1530
|
| [5] |
DelortJ-M. Existence de nappes de tourbillon en dimension deux. J. Am. Math. Soc., 1991, 4(3): 553-586
|
| [6] |
DiPernaRJ, MajdaAJ. Oscillations and concentrations in weak solutions of the incompressible fluid equations. Commun. Math. Phys., 1987, 108: 667-689
|
| [7] |
DonatiM, IftimieD. Long time confinement of vorticity around a stable stationary point vortex in a bounded planar domain. Ann. Inst. H. Poincaré Anal. Non Linéaire, 2021, 38(5): 1461-1485
|
| [8] |
DürrD, PulvirentiM. On the vortex flow in bounded domains. Commun. Math. Phys., 1982, 85(2): 265-273
|
| [9] |
Helmholtz, H.: Über Integrale der hydrodynamischen Gleichungen, welche den Wirbelbewegungen entsprechen. (German) J. Reine Angew. Math. 55, 25–55 (1858)
|
| [10] |
Jerrard, R.L.: Fluid Flows with Concentrated Vorticity. Course notes (2020)
|
| [11] |
MarchioroC. On the inviscid limit for a fluid with a concentrated vorticity. Commun. Math. Phys., 1998, 196: 53-65
|
| [12] |
MarchioroC. On the localization of the vortices. Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat. (8), 1998, 1(3): 571-584
|
| [13] |
MarchioroC. Vanishing viscosity limit for an incompressible fluid with concentrated vorticity. J. Math. Phys., 2007, 48 ArticleID: 065302
|
| [14] |
MarchioroC, PulvirentiM. Euler evolution for singular initial data and vortex theory. Commun. Math. Phys., 1983, 91(4): 563-572
|
| [15] |
MarchioroC, PulvirentiM. Vortices and localization in Euler flows. Commun. Math. Phys., 1993, 154(1): 49-61
|
| [16] |
Marchioro, C., Pulvirenti, M.: Mathematical Theory of Incompressible Non-Viscous Fluids. Appl. Math. Sci. 96, Springer, New York (1994)
|
| [17] |
Serfati, P.: Borne en temps des caractéristiques de l’équation d’Euler 2d à tourbillon positif et localisation pour le modèle point-vortex. (1998)
|
| [18] |
Serfati, P.: Tourbillons-presque-mesures spatialement bornés et équation d’Euler 2D. (1998)
|
| [19] |
SuQ. Long time behavior of 2D water waves with point vortices. Commun. Math. Phys., 2020, 380(3): 1173-1266
|
| [20] |
TurkingtonB. On the evolution of a concentrated vortex in an ideal fluid. Arch. Ration. Mech. Anal., 1987, 97: 75-87
|
| [21] |
Vishik, M.: Instability and non-uniqueness in the Cauchy problem for the Euler equations of an ideal incompressible fluid. Part I. arXiv:1805.09426 (2018)
|
| [22] |
Vishik, M.: Instability and non-uniqueness in the Cauchy problem for the Euler equations of an ideal incompressible fluid. Part II. arXiv:1805.09440 (2018)
|
| [23] |
WangC, ZhangZ, ZhaoW, ZhengY. Local well-posedness and break-down criterion of the incompressible Euler equations with free boundary. Mem. Am. Math. Soc., 2021, 270: 1318
|
| [24] |
YudovichV. Nonstationary flow of an ideal incompressible liquid. Zh. Vych. Mat., 1963, 3: 1032-1066
|
Funding
NSFC Grant of China(12271497)
National Key Research and Development Program of China(2020YFA0713100)
RIGHTS & PERMISSIONS
School of Mathematical Sciences, University of Science and Technology of China and Springer-Verlag GmbH Germany, part of Springer Nature
Just Accepted
This article has successfully passed peer review and final editorial review, and will soon enter typesetting, proofreading and other publishing processes. The currently displayed version is the accepted final manuscript. The officially published version will be updated with format, DOI and citation information upon launch. We recommend that you pay attention to subsequent journal notifications and preferentially cite the officially published version. Thank you for your support and cooperation.