PDF
Abstract
We consider the two-dimensional incompressible Euler equation
We are interested in the cases when the initial vorticity has the form
\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\omega _0=\omega _{0,\epsilon }+\omega _{0p,\epsilon }$$\end{document}
, where
\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\omega _{0,\epsilon }$$\end{document}
is concentrated near
M disjoint points
\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$p_m^0$$\end{document}
and
\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\omega _{0p,\epsilon }$$\end{document}
is a small perturbation term. We prove that for such initial vorticities, the solution
\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\omega (x,t)$$\end{document}
admits a decomposition
\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\omega (x,t)=\omega _{\epsilon }(x,t)+\omega _{p,\epsilon }(x,t)$$\end{document}
, where
\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\omega _{\epsilon }(x,t)$$\end{document}
remains concentrated near
M points
\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$p_m(t)$$\end{document}
and
\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\omega _{p,\epsilon }(x,t)$$\end{document}
remains small for
\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$t \in [0,T]$$\end{document}
. As a consequence of such decomposition, we are able to consider the initial vorticity of the form
\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\omega _0(x)=\sum _{m=1}^M \frac{\gamma _m}{\epsilon ^2}\eta (\frac{x-p_m^0}{\epsilon })$$\end{document}
, where we do not assume
\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\eta $$\end{document}
to have compact support. Finally, we prove that if
\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$p_m(t)$$\end{document}
remains separated for all
\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$t\in [0,+\infty )$$\end{document}
, then
\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\omega (x,t)$$\end{document}
remains concentrated near
M points at least for
\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$t \le c_0 |\log A_{\epsilon }|$$\end{document}
, where
\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$A_{\epsilon }$$\end{document}
is small and converges to 0 as
\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\epsilon \rightarrow 0$$\end{document}
.
Keywords
Point vortices
/
Vortex interaction
Cite this article
Download citation ▾
Dengjun Guo.
Stability of the Two-Dimensional Point Vortices in Euler Flows.
Communications in Mathematics and Statistics 1-42 DOI:10.1007/s40304-024-00436-z
| [1] |
Aref, H.: Point vortex dynamics: a classical mathematics playground. J. Math. Phys. 23, 48(6) (2007)
|
| [2] |
BertozziAL, MajdaAJ Vorticity and Incompressible Flow, 2002 Cambridge Cambridge University Press
|
| [3] |
ButtàP, MarchioroC. Long time evolution of concentrated Euler flows with planar symmetry. SIAM J. Math. Anal., 2018, 50: 735-760
|
| [4] |
DávilaJ, del PinoM, MussoM, WeiJ. Gluing methods for vortex dynamics in Euler flows. Arch. Ration. Mech. Anal., 2020, 235(3): 1467-1530
|
| [5] |
DelortJ-M. Existence de nappes de tourbillon en dimension deux. J. Am. Math. Soc., 1991, 4(3): 553-586
|
| [6] |
DiPernaRJ, MajdaAJ. Oscillations and concentrations in weak solutions of the incompressible fluid equations. Commun. Math. Phys., 1987, 108: 667-689
|
| [7] |
DonatiM, IftimieD. Long time confinement of vorticity around a stable stationary point vortex in a bounded planar domain. Ann. Inst. H. Poincaré Anal. Non Linéaire, 2021, 38(5): 1461-1485
|
| [8] |
DürrD, PulvirentiM. On the vortex flow in bounded domains. Commun. Math. Phys., 1982, 85(2): 265-273
|
| [9] |
Helmholtz, H.: Über Integrale der hydrodynamischen Gleichungen, welche den Wirbelbewegungen entsprechen. (German) J. Reine Angew. Math. 55, 25–55 (1858)
|
| [10] |
Jerrard, R.L.: Fluid Flows with Concentrated Vorticity. Course notes (2020)
|
| [11] |
MarchioroC. On the inviscid limit for a fluid with a concentrated vorticity. Commun. Math. Phys., 1998, 196: 53-65
|
| [12] |
MarchioroC. On the localization of the vortices. Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat. (8), 1998, 1(3): 571-584
|
| [13] |
MarchioroC. Vanishing viscosity limit for an incompressible fluid with concentrated vorticity. J. Math. Phys., 2007, 48 ArticleID: 065302
|
| [14] |
MarchioroC, PulvirentiM. Euler evolution for singular initial data and vortex theory. Commun. Math. Phys., 1983, 91(4): 563-572
|
| [15] |
MarchioroC, PulvirentiM. Vortices and localization in Euler flows. Commun. Math. Phys., 1993, 154(1): 49-61
|
| [16] |
Marchioro, C., Pulvirenti, M.: Mathematical Theory of Incompressible Non-Viscous Fluids. Appl. Math. Sci. 96, Springer, New York (1994)
|
| [17] |
Serfati, P.: Borne en temps des caractéristiques de l’équation d’Euler 2d à tourbillon positif et localisation pour le modèle point-vortex. (1998)
|
| [18] |
Serfati, P.: Tourbillons-presque-mesures spatialement bornés et équation d’Euler 2D. (1998)
|
| [19] |
SuQ. Long time behavior of 2D water waves with point vortices. Commun. Math. Phys., 2020, 380(3): 1173-1266
|
| [20] |
TurkingtonB. On the evolution of a concentrated vortex in an ideal fluid. Arch. Ration. Mech. Anal., 1987, 97: 75-87
|
| [21] |
Vishik, M.: Instability and non-uniqueness in the Cauchy problem for the Euler equations of an ideal incompressible fluid. Part I. arXiv:1805.09426 (2018)
|
| [22] |
Vishik, M.: Instability and non-uniqueness in the Cauchy problem for the Euler equations of an ideal incompressible fluid. Part II. arXiv:1805.09440 (2018)
|
| [23] |
WangC, ZhangZ, ZhaoW, ZhengY. Local well-posedness and break-down criterion of the incompressible Euler equations with free boundary. Mem. Am. Math. Soc., 2021, 270: 1318
|
| [24] |
YudovichV. Nonstationary flow of an ideal incompressible liquid. Zh. Vych. Mat., 1963, 3: 1032-1066
|
Funding
NSFC Grant of China(12271497)
National Key Research and Development Program of China(2020YFA0713100)
RIGHTS & PERMISSIONS
School of Mathematical Sciences, University of Science and Technology of China and Springer-Verlag GmbH Germany, part of Springer Nature