Global Existence and Uniqueness of Pathwise Solution to the Stochastic 2D Inviscid Boussinesq Equations

Shijia Zhang , Guoli Zhou

Communications in Mathematics and Statistics ›› : 1 -28.

PDF
Communications in Mathematics and Statistics ›› : 1 -28. DOI: 10.1007/s40304-024-00431-4
Article

Global Existence and Uniqueness of Pathwise Solution to the Stochastic 2D Inviscid Boussinesq Equations

Author information +
History +
PDF

Abstract

Global well-posedness of 2D inviscid Boussinesq equations is unsolved. In the present work, we find that if this inviscid hydrodynamics equation is perturbed by noise, the global well-posedness holds in high probability with initial data satisfies a certain Gevrey-type bound. Moreover, the unique global solution to the stochastic inviscid 2D Boussinesq equation is bounded by the initial data.

Keywords

Stochastic Boussinesq equations / Regularity / Gevrey spaces / Mathematical Sciences / Statistics

Cite this article

Download citation ▾
Shijia Zhang, Guoli Zhou. Global Existence and Uniqueness of Pathwise Solution to the Stochastic 2D Inviscid Boussinesq Equations. Communications in Mathematics and Statistics 1-28 DOI:10.1007/s40304-024-00431-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

AdhikariD, CaoC, WuJ. Global regularity results for the 2D boussinesq equations with vertical dissipation. J. Differ. Equ., 2011, 25161637-1655.

[2]

AdhikariD, CaoC, ShangH, WuJ, XuX, YeZ. Global regularity results for the 2D boussinesq equations with partial dissipation. J. Differ. Equ., 2016, 26021893-1917.

[3]

Alonso-OránD, Bethencourt de LeónA. On the well-posedness of stochastic boussinesq equations with transport noise. J. Nonl. Sci., 2020, 301175-224.

[4]

BénardM. Les tourbillons cellulaires dans une nappe liquide transportant de chaleur par convection en regime permanent. Ann. Chim. Phys., 1901, 23: 62-144

[5]

Boussinesq, J.V.: Théorie de lécoulement tourbillonnant et tumultueux des liquides dans les lits rectilignes à grande section, Des comptes rendus des séances des sciences, (1897)

[6]

BrzezniakZ, MotylE. The existence of martingale solutions to the stochastic Boussinesq equations. Glob. Stoch. Anal., 2011, 12175-216

[7]

BuckmasterT, NahmodA, StaffilaniG, WidmayerK. The surface quasi-geostrophic equation with random diffusion. Int. Math. Res. Not., 2020, 2020239370-9385.

[8]

BusseFFundamentals of Thermal Convection, 1989Plate Tectonics and Global DynamicsMantle Convections

[9]

ChaeD. Global regularity for the 2D Boussinesq equations with partial viscosity terms. Adv. Math., 1997, 2032497-513.

[10]

DanchinR, PaicuM. Existence and uniqueness results for the Boussinesq system with data in Lorentz spaces. Phys. D., 2008, 23710–121444-1460.

[11]

DuL, ZhangT. Local and global existence of pathwise solution for the stochastic Boussinesq equations with multiplicative noises. Stoch. Process. Appl., 2020, 13031545-1567.

[12]

DuanJ, MilletA. Large deviations for the Boussinesq equations under random influences. Stoch. Process. Appl., 2009, 11962052-2081.

[13]

FerrarioB. The Bénard problem with random perturbations: dissipativity and invariant measures. NoDEA Nonlinear Differ. Equ. Appl., 1997, 41101-121.

[14]

FoiasC, TemamR. Gevrey class regularity for the solutions of the Navier-Stokes equations. J. Funct. Anal., 1989, 872359-369.

[15]

Glatt-HoltzNE, VicolV. Local and global existence of smooth solutions for the stochastic Euler equations with multiplicative noise. Ann. Probab., 2014, 42180-145.

[16]

HouTY, LiC. Global well-posedness of the viscous Boussinesq equations. Discrete Contin. Dyn. Syst., 2005, 1211-12.

[17]

JiuQ, MiaoC, WuJ, ZhangZ. The 2D incompressible Boussinesq equations with general critical dissipation. SIAM J. Math. Anal., 2014, 4653426-3454.

[18]

JiuQ, YuH. Global well-posedness for 3D generalized Navier-Stokes-Boussinesq equations. Acta Math. Appl. Sin. Engl. Ser., 2016, 3211-16.

[19]

LaiMJ, PanR, ZhaoK. Initial boundary value problem for two-dimensional viscous Boussinesq equations. Arch. Ration. Mech. Anal., 2011, 1993739-760.

[20]

Lord RayleighO. On convection currents in a horizontal layer of fluid, when the higher temperature is on the under side. Philos. Mag. Ser., 1916, 632529-546.

[21]

MajdaAndrew JVorticity and Incompressible Flow and A, 2001L. BertozziCambridge University Press.

[22]

PedloskyJGeophysical Fluid Dynamics, 1987New YorkSpringer.

[23]

PuX, GuoB. Global well-posedness of the stochastic 2D Boussinesq equations with partial viscosity, Acta Math. Sci. Ser. B Engl. Ed., 2011, 3151968-1984

[24]

Resnick, S : Adventures in Stochastic Processes, Birkhäuser Boston, Boston(1992)

[25]

RichardsonLWeather Prediction by Numerical Process, 2007CambridgeCambridge University Press.

[26]

StanisicMMThe Mathematical Theory of Turbulence, 19882New YorkSpringer-Verlag.

[27]

TemamRNavier-Stokes Equations: Theory and Numerical Analysis, 20013ProvidenceAmerican Math. Soc

[28]

WuJ, XuX, YeZ. The 2D Boussinesq equations with fractional horizontal dissipation and thermal diffusion. J. Math. Pures Appl., 2018, 1159187-217.

[29]

WuJ, XuX, XueL, YeZ. Regularity results for the 2D Boussinesq equations with critical or supercritical dissipation. Commun. Math. Sci., 2016, 1471963-1997.

[30]

YamazakiK. Global martingale solution for the stochastic Boussinesq system with zero dissipation. Stoch. Anal. Appl., 2016, 343404-426.

[31]

YangW, JiuQ, WuJ. Global well-posedness for a class of 2D Boussinesq systems with fractional dissipation. J. Differ. Equ., 2014, 257114188-4213.

[32]

YeZ, XuX. Global well-posedness of the 2D Boussinesq equations with fractional Laplacian dissipation. J. Differ. Equ., 2016, 26086716-6744.

Funding

National Natural Science Foundation of China(11971077)

Fundamental Research Funds for Central Universities(2020CDJ-LHZZ-027)

Key Laboratory of Nonlinear Analysis and its Applications (Chongqing University), Ministry of Education(Chongqing University)

RIGHTS & PERMISSIONS

School of Mathematical Sciences, University of Science and Technology of China and Springer-Verlag GmbH Germany, part of Springer Nature

AI Summary AI Mindmap
PDF

151

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/