Global well-posedness of 2D inviscid Boussinesq equations is unsolved. In the present work, we find that if this inviscid hydrodynamics equation is perturbed by noise, the global well-posedness holds in high probability with initial data satisfies a certain Gevrey-type bound. Moreover, the unique global solution to the stochastic inviscid 2D Boussinesq equation is bounded by the initial data.
| [1] |
AdhikariD, CaoC, WuJ. Global regularity results for the 2D boussinesq equations with vertical dissipation. J. Differ. Equ., 2011, 25161637-1655.
|
| [2] |
AdhikariD, CaoC, ShangH, WuJ, XuX, YeZ. Global regularity results for the 2D boussinesq equations with partial dissipation. J. Differ. Equ., 2016, 26021893-1917.
|
| [3] |
Alonso-OránD, Bethencourt de LeónA. On the well-posedness of stochastic boussinesq equations with transport noise. J. Nonl. Sci., 2020, 301175-224.
|
| [4] |
BénardM. Les tourbillons cellulaires dans une nappe liquide transportant de chaleur par convection en regime permanent. Ann. Chim. Phys., 1901, 23: 62-144
|
| [5] |
Boussinesq, J.V.: Théorie de lécoulement tourbillonnant et tumultueux des liquides dans les lits rectilignes à grande section, Des comptes rendus des séances des sciences, (1897)
|
| [6] |
BrzezniakZ, MotylE. The existence of martingale solutions to the stochastic Boussinesq equations. Glob. Stoch. Anal., 2011, 12175-216
|
| [7] |
BuckmasterT, NahmodA, StaffilaniG, WidmayerK. The surface quasi-geostrophic equation with random diffusion. Int. Math. Res. Not., 2020, 2020239370-9385.
|
| [8] |
BusseFFundamentals of Thermal Convection, 1989Plate Tectonics and Global DynamicsMantle Convections
|
| [9] |
ChaeD. Global regularity for the 2D Boussinesq equations with partial viscosity terms. Adv. Math., 1997, 2032497-513.
|
| [10] |
DanchinR, PaicuM. Existence and uniqueness results for the Boussinesq system with data in Lorentz spaces. Phys. D., 2008, 23710–121444-1460.
|
| [11] |
DuL, ZhangT. Local and global existence of pathwise solution for the stochastic Boussinesq equations with multiplicative noises. Stoch. Process. Appl., 2020, 13031545-1567.
|
| [12] |
DuanJ, MilletA. Large deviations for the Boussinesq equations under random influences. Stoch. Process. Appl., 2009, 11962052-2081.
|
| [13] |
FerrarioB. The Bénard problem with random perturbations: dissipativity and invariant measures. NoDEA Nonlinear Differ. Equ. Appl., 1997, 41101-121.
|
| [14] |
FoiasC, TemamR. Gevrey class regularity for the solutions of the Navier-Stokes equations. J. Funct. Anal., 1989, 872359-369.
|
| [15] |
Glatt-HoltzNE, VicolV. Local and global existence of smooth solutions for the stochastic Euler equations with multiplicative noise. Ann. Probab., 2014, 42180-145.
|
| [16] |
HouTY, LiC. Global well-posedness of the viscous Boussinesq equations. Discrete Contin. Dyn. Syst., 2005, 1211-12.
|
| [17] |
JiuQ, MiaoC, WuJ, ZhangZ. The 2D incompressible Boussinesq equations with general critical dissipation. SIAM J. Math. Anal., 2014, 4653426-3454.
|
| [18] |
JiuQ, YuH. Global well-posedness for 3D generalized Navier-Stokes-Boussinesq equations. Acta Math. Appl. Sin. Engl. Ser., 2016, 3211-16.
|
| [19] |
LaiMJ, PanR, ZhaoK. Initial boundary value problem for two-dimensional viscous Boussinesq equations. Arch. Ration. Mech. Anal., 2011, 1993739-760.
|
| [20] |
Lord RayleighO. On convection currents in a horizontal layer of fluid, when the higher temperature is on the under side. Philos. Mag. Ser., 1916, 632529-546.
|
| [21] |
MajdaAndrew JVorticity and Incompressible Flow and A, 2001L. BertozziCambridge University Press.
|
| [22] |
PedloskyJGeophysical Fluid Dynamics, 1987New YorkSpringer.
|
| [23] |
PuX, GuoB. Global well-posedness of the stochastic 2D Boussinesq equations with partial viscosity, Acta Math. Sci. Ser. B Engl. Ed., 2011, 3151968-1984
|
| [24] |
Resnick, S : Adventures in Stochastic Processes, Birkhäuser Boston, Boston(1992)
|
| [25] |
RichardsonLWeather Prediction by Numerical Process, 2007CambridgeCambridge University Press.
|
| [26] |
StanisicMMThe Mathematical Theory of Turbulence, 19882New YorkSpringer-Verlag.
|
| [27] |
TemamRNavier-Stokes Equations: Theory and Numerical Analysis, 20013ProvidenceAmerican Math. Soc
|
| [28] |
WuJ, XuX, YeZ. The 2D Boussinesq equations with fractional horizontal dissipation and thermal diffusion. J. Math. Pures Appl., 2018, 1159187-217.
|
| [29] |
WuJ, XuX, XueL, YeZ. Regularity results for the 2D Boussinesq equations with critical or supercritical dissipation. Commun. Math. Sci., 2016, 1471963-1997.
|
| [30] |
YamazakiK. Global martingale solution for the stochastic Boussinesq system with zero dissipation. Stoch. Anal. Appl., 2016, 343404-426.
|
| [31] |
YangW, JiuQ, WuJ. Global well-posedness for a class of 2D Boussinesq systems with fractional dissipation. J. Differ. Equ., 2014, 257114188-4213.
|
| [32] |
YeZ, XuX. Global well-posedness of the 2D Boussinesq equations with fractional Laplacian dissipation. J. Differ. Equ., 2016, 26086716-6744.
|
Funding
National Natural Science Foundation of China(11971077)
Fundamental Research Funds for Central Universities(2020CDJ-LHZZ-027)
Key Laboratory of Nonlinear Analysis and its Applications (Chongqing University), Ministry of Education(Chongqing University)
RIGHTS & PERMISSIONS
School of Mathematical Sciences, University of Science and Technology of China and Springer-Verlag GmbH Germany, part of Springer Nature