Exact Results for Some Extremal Problems on Expansions I

Xizhi Liu , Jialei Song , Long-Tu Yuan

Communications in Mathematics and Statistics ›› : 1 -38.

PDF
Communications in Mathematics and Statistics ›› :1 -38. DOI: 10.1007/s40304-024-00429-y
Article
research-article

Exact Results for Some Extremal Problems on Expansions I

Author information +
History +
PDF

Abstract

The expansion of a graph F, denoted by $F^3$, is the 3-graph obtained from F by adding a new vertex to each edge such that different edges receive different vertices. We establish a stability version of a theorem by Kostochka–Mubayi–Verstraëte (Kostochka et al in J Combin Theory Ser B 122:457–478, 2017) and demonstrate two applications of it by establishing tight upper bounds for large $n:$

The maximum number of edges in an n-vertex 3-graph that does not contain $T^3$ for certain class ${\mathcal {T}}$ of trees, thereby (partially) sharpening the asymptotic result of Kostochka–Mubayi–Verstraëte.

The minimum number of colors needed to color the complete n-vertex 3-graph to ensure the existence of a rainbow copy of $F^3$ when F is a graph obtained from some tree $T\in {\mathcal {T}}$ by adding a new edge, thereby extending anti-Ramsey results on $P_{2t}^3$ by Gu–Li–Shi and $C_{2t}^3$ by Tang–Li–Yan.

We introduce a framework that utilizes tools from Extremal Set Theory for solving certain generalized Turán problems. More specifically, we establish a parallel of the stability theorem above in generalized Turán problems. Using this stability theorem, we determine, for large n, the maximum number of triangles in an n-vertex graph that does not contain the shadow of $C_{k}^3$ or $T^3$ for $T\in {\mathcal {T}}$, thus answering a question of Lv et al. on generalized Turán problems.

Keywords

Hypergraph Turán problem / Anti-Ramsey problem / Generalized Turán problem / Expansion of trees / Linear cycles / Triple systems / Stability

Cite this article

Download citation ▾
Xizhi Liu, Jialei Song, Long-Tu Yuan. Exact Results for Some Extremal Problems on Expansions I. Communications in Mathematics and Statistics 1-38 DOI:10.1007/s40304-024-00429-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

AlonN, FischerE, KrivelevichM, SzegedyM. Efficient testing of large graphs. Combinatorica, 2000, 20(4): 451-476

[2]

AlonN, ShikhelmanC. Many $T$ copies in $H$-free graphs. J. Combin. Theory Ser. B, 2016, 121: 146-172

[3]

BollobásB, DaykinDE, ErdősP. Sets of independent edges of a hypergraph. Quart. J. Math. Oxford Ser. (2), 1976, 27(105): 25-32

[4]

BondyJA, MurtyUSRGraph theory with applications, 1976, New York. American Elsevier Publishing Co. Inc,.

[5]

BushawN, KettleN. Turán numbers for forests of paths in hypergraphs. SIAM J. Discrete Math., 2014, 28(2): 711-721

[6]

ErdősP. On the number of complete subgraphs contained in certain graphs. Magyar Tud. Akad. Mat. Kutató Int. Közl., 1962, 7: 459-464

[7]

Erdős, P.: Extremal problems in graph theory. In Theory of Graphs and its Applications (Proc. Sympos. Smolenice, 1963), pp. 29–36. Publ. House Czech. Acad. Sci., Prague, (1964)

[8]

Erdős, P.: A problem on independent $r$-tuples. Ann. Univ. Sci. Budapest. Eötvös Sect. Math., 8, 93–95, (1965)

[9]

Erdős, P., Simonovits, M., Sós, V. T.: Anti-Ramsey theorems. In Infinite and finite sets (Colloq., Keszthely, 1973; dedicated to P. Erdős on his 60th birthday), Vol. II, Colloq. Math. Soc. János Bolyai, 10, 633–643. (1975)

[10]

FoxJ . A new proof of the graph removal lemma. Ann. of Math., 2011, 174(1): 561-579

[11]

FranklP. Improved bounds for Erdős’ matching conjecture. J. Combin. Theory Ser. A, 2013, 120(5): 1068-1072

[12]

FranklP, FürediZ. Exact solution of some Turán-type problems. J. Combin. Theory Ser. A, 1987, 45(2): 226-262

[13]

FranklP, KupavskiiA. Two problems on matchings in set families–in the footsteps of Erdős and Kleitman. J. Combin. Theory Ser. B, 2019, 138: 286-313

[14]

FujitaS, MagnantC, OzekiK. Rainbow generalizations of Ramsey theory: a survey. Graphs Combin., 2010, 26(1): 1-30

[15]

FürediZ. Linear trees in uniform hypergraphs. Eur. J. Combin., 2014, 35: 264-272

[16]

FürediZ, JiangT. Hypergraph Turán numbers of linear cycles. J. Combin. Theory Ser. A, 2014, 123: 252-270

[17]

Füredi, Z., Jiang, T.: Turán numbers of hypergraph trees. arXiv preprint arXiv:1505.03210, (2015)

[18]

FürediZ, JiangT, KostochkaA, MubayiD, VerstraëteJ. Hypergraphs not containing a tight tree with a bounded trunk. SIAM J. Discrete Math., 2019, 33(2): 862-873

[19]

Füredi, Z., Jiang, T., Kostochka, A., Mubayi, D., Verstraëte, J.: Tight paths in convex geometric hypergraphs. Adv. Comb., pages Paper No. 1, 14, (2020)

[20]

FürediZ, JiangT, SeiverR. Exact solution of the hypergraph Turán problem for $k$-uniform linear paths. Combinatorica, 2014, 34(3): 299-322

[21]

Füredi, Z., Kostochka, A.: Turán number for bushes. arXiv preprint arXiv:2307.04932, (2023)

[22]

GuR, LiJ, ShiY. Anti-Ramsey numbers of paths and cycles in hypergraphs. SIAM J. Discrete Math., 2020, 34(1): 271-307

[23]

Gu, R., Li, X., Shi, Y.: Hypergraph Turán numbers of vertex disjoint cycles. arXiv preprint arXiv:1305.5372, (2013)

[24]

GuoM, LuH, PengX. Anti-Ramsey Number of Matchings in 3-uniform Hypergraphs. SIAM J. Discrete Math., 2023, 37(3): 1970-1987

[25]

HallP. On Representatives of Subsets. J. London Math. Soc., 1935, 10(1): 26-30

[26]

HuangH, LohP-S, SudakovB. The size of a hypergraph and its matching number. Combin. Probab. Comput., 2012, 21(3): 442-450

[27]

Katona, G.: A theorem of finite sets. In Theory of Graphs (Proc. Colloq., Tihany, 1966), pp. 187–207. Academic Press, New York-London, (1968)

[28]

KönigD. Graphs and matrices. Mat. és Fizikai Lapok, 1931, 38: 116-119

[29]

KostochkaA, MubayiD, VerstraëteJ. Turán problems and shadows I: Paths and cycles. J. Combin. Theory Ser. A, 2015, 129: 57-79

[30]

KostochkaA, MubayiD, VerstraëteJ. Turán problems and shadows III: expansions of graphs. SIAM J. Discrete Math., 2015, 29(2): 868-876

[31]

KostochkaA, MubayiD, VerstraëteJ. Turán problems and shadows II: Trees. J. Combin. Theory Ser. B, 2017, 122: 457-478

[32]

KövariT, SósVT, TuránP. On a problem of K. Zarankiewicz. Colloq. Math., 1954, 3: 50-57

[33]

Kruskal, J. B.: The number of simplices in a complex. In Mathematical optimization techniques, pp. 251–278. Univ. California Press, Berkeley-Los Angeles, Calif., (1963)

[34]

LiT, TangY, YanG, ZhouW. Rainbow Turán numbers of matchings and forests of hyperstars in uniform hypergraphs. Discrete Math., 2023, 3469113481

[35]

LiuX, MubayiD. The feasible region of hypergraphs. J. Combin. Theory Ser. B, 2021, 148: 23-59

[36]

LiuX, MubayiD. Tight bounds for Katona’s shadow intersection theorem. European J. Combin., 2021, 97103391

[37]

LiuX, MukherjeeS. Stability theorems for some Kruskal-Katona type results. European J. Combin., 2023, 110103666

[38]

Liu, X., Song, J.: Exact results for some extremal problems on expansions I. arXiv preprint arXiv:2310.01736, (2023)

[39]

LvZ, GyőriE, HeZ, SaliaN, TompkinsC, VargaK, ZhuX. Generalized Turán numbers for the edge blow-up of a graph. Discrete Math., 2024, 3471113682

[40]

MubayiD. A hypergraph extension of Turán’s theorem. J. Combin. Theory Ser. B, 2006, 96(1): 122-134

[41]

Mubayi, D., Verstraëte, J.: A survey of Turán problems for expansions. In Recent trends in combinatorics, volume 159 of IMA Vol. Math. Appl., pp. 117–143. Springer, [Cham], (2016)

[42]

ÖzkahyaL, YoungM. Anti-Ramsey number of matchings in hypergraphs. Discrete Math., 2013, 313(20): 2359-2364

[43]

Ruzsa, I. Z., Szemerédi, E.: Triple systems with no six points carrying three triangles. Combinatorics (Proc. Fifth Hungarian Colloq., Keszthely, 1976), Vol. II, volume 18 of Colloq. Math. Soc. János Bolyai, p 939–945. North-Holland, Amsterdam-New York, (1978)

[44]

Simonovits, M.: A method for solving extremal problems in graph theory, stability problems. In Theory of Graphs (Proc. Colloq., Tihany, 1966), pp. 279–319. (1968)

[45]

Song, J.: Triangles in graphs without the expansion of $4$-cycle. submitted

[46]

TangY, LiT, YanG. Anti-Ramsey number of expansions of paths and cycles in uniform hypergraphs. J. Graph Theory, 2022, 101(4): 668-685

[47]

TangY, LiT, YanG. Anti-Ramsey number of disjoint union of star-like hypergraphs. Discrete Math., 2024, 3474113748

[48]

TuránP. On an external problem in graph theory. Mat. Fiz. Lapok, 1941, 48: 436-452

[49]

YuanL-T. Extremal graphs for edge blow-up of graphs. J. Combin. Theory Ser. B, 2022, 152: 379-398

[50]

ZhangF, ChenY, GyőriE, ZhuX. Maximum cliques in a graph without disjoint given subgraph. Discrete Math., 2024, 3474113863

Funding

ERC Advanced Grant(101020255)

Leverhulme Research Project Grant(RPG-2018-424)

National Natural Science Foundation of China(12271169)

Science and Technology Commission of Shanghai Municipality(22DZ2229014)

RIGHTS & PERMISSIONS

School of Mathematical Sciences, University of Science and Technology of China and Springer-Verlag GmbH Germany, part of Springer Nature

PDF

151

Accesses

0

Citation

Detail

Sections
Recommended

/