Smoothness of the Optimal Transport Map on Riemannian Products of Spheres

Jian Ye

Communications in Mathematics and Statistics ›› : 1 -18.

PDF
Communications in Mathematics and Statistics ›› : 1 -18. DOI: 10.1007/s40304-024-00423-4
Article

Smoothness of the Optimal Transport Map on Riemannian Products of Spheres

Author information +
History +
PDF

Abstract

This paper approaches the smoothness of the optimal transport map on Riemannian products manifolds. By classical continuity method, we give an alternative proof of the smoothness of the optimal transport map on Riemannian products of the round spheres. In addition, we also prove that the smoothness of the optimal transport map is not stable in Riemannian products of round spheres.

Keywords

Monge–Ampère type equation / Optimal transport map / Continuity method / C-convex function / Maximum principle

Cite this article

Download citation ▾
Jian Ye. Smoothness of the Optimal Transport Map on Riemannian Products of Spheres. Communications in Mathematics and Statistics 1-18 DOI:10.1007/s40304-024-00423-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

BrenierY. Polar factorization and monotone rearrangement of vector valued functions. Comm. Pure Appl. Math., 1991, 44: 375-417.

[2]

CaffarelliLA. The regularity of mapping with a convex potential. J. Amer. Math. Soc., 1992, 5: 99-104.

[3]

CaffarelliLA. Boundary regularity of maps with convex potentials. Comm. Pure Appl. Math., 1992, 45: 1141-1151.

[4]

CaffarelliLA. Boundary regularity of maps with convex potentials II. Ann. of Math., 1996, 144: 453-496.

[5]

CorderoerausquinD. Sur le transport de mesures périodiques. Comptes Rendus De Lacadémie Des Sciences, 1999, 329: 199-202

[6]

DelanoëP. Classical solvability in dimension two of the second boundary value problem associated with the Monge-Ampére operator. Ann. Inst. Henri Poincar Anal. Non Lin., 1991, 8: 443-457.

[7]

DelanoëP. On the smoothness of the potential function in Riemannian optimal transport. Commun. Anal. Geomet., 2015, 23: 11-89.

[8]

DelanoëP, GeY. Regularity of optimal transportation maps on compact, locally nearly spherical, manifolds. J. Reine Angew. Math., 2010, 646: 65-115

[9]

FigalliA, KimYoung-Heon, McCannRobert J. Regularity of optimal transport maps on multiple products of spheres. J. Eur. Math. Soc., 2013, 15: 1131-1166.

[10]

Ge, Yuxin, Ye, Jian: Regularity of optimal transport maps on locally nearly spherical manifolds. Annales de la Faculté des sciences de Toulouse Mathématiques, Serie 6, Volume 30 no. 2, pp. 353-409 (2021)

[11]

Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order, Grundlehren der math. Wissensch. 224, Springer-Verlag, Berlin Heidelberg, 1977, 2nd edit. 1983, revised 3rd printing

[12]

KantorovichL. On the transfer of masses. Dokl. Acad. Nauk. USSR, 1942, 37: 7-8

[13]

LiuJ, TrudingerN, WangX-J. Interior C2,α\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$C^{2,\alpha }$$\end{document} regularity for potential functions in optimal transportation. Comm. Part. Diff. Equ., 2010, 35: 165-184.

[14]

LoeperG. On the regularity of solutions of optimal transportation problems. Acta Math., 2009, 202: 241-283.

[15]

LoeperG. Regularity of optimal maps on the sphere: the quadratic cost and the reflector antenna. Arch. Ration. Mech. Anal., 2011, 199: 269-289.

[16]

LoeperG, VillaniC. Regularity of optimal transport in curved geometry: the nonfocal case. Duke Math. J., 2010, 151: 431-485.

[17]

MaX-N, TrudingerNS, WangX-J. Regularity of potential functions of the optimal transportation problem. Arch. Ration. Mech. Anal., 2005, 177: 151-183.

[18]

McCannRJ. Polar factorization of maps on Riemannian manifolds. Geom. Funct. Anal., 2001, 11: 589-608.

[19]

Monge, G.: Mémoire sur la théorie des déblais et remblais, Mémoires de l’Académie Royale des Sciences de Paris (1781)

[20]

UrbasJ. On the second boundary value problem for equations of Monge-Ampère type. J. Reine Angew. Math., 1997, 487: 115-124

[21]

Villani, C.: Topics in optimal transportation. Graduate Studies in Mathematics, Vol. 58. American Mathematical Society, Providence, RI (2003)

[22]

Villani, C.: Optimal Transport, Old and New. Vol. 338 of Grundlehren der mathematischen Wissenschaften. Springer, Berlin (2009)

RIGHTS & PERMISSIONS

School of Mathematical Sciences, University of Science and Technology of China and Springer-Verlag GmbH Germany, part of Springer Nature

AI Summary AI Mindmap
PDF

247

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/