Sufficient Dimension Reduction for Multiple Compositional Predictors

Qiuli Dong , Yang Luo , Yiming Wang , Peirong Xu

Communications in Mathematics and Statistics ›› : 1 -28.

PDF
Communications in Mathematics and Statistics ›› : 1 -28. DOI: 10.1007/s40304-024-00422-5
Article

Sufficient Dimension Reduction for Multiple Compositional Predictors

Author information +
History +
PDF

Abstract

Motivated by research problems arising in the analysis of economic and geochemical data, we consider sufficient dimension reduction in regression with multiple compositional predictors. We develop a second-moment-based method that respects the unique features of compositional data. The proposed method is model-free and can fully recover the central dimension-reduction subspace, which then allows us to derive a sufficient reduction of the compositional predictors. In addition, we suggest a Bayesian-type information criterion to determine the structural dimension of the central subspace. Extensive simulation studies and an application to a disposable income of Chinese urban residents data set demonstrate the effectiveness and efficiency of the method.

Keywords

Compositional data / Sufficient dimension reduction / Moment-based inverse regression / Sliced average variance estimation

Cite this article

Download citation ▾
Qiuli Dong, Yang Luo, Yiming Wang, Peirong Xu. Sufficient Dimension Reduction for Multiple Compositional Predictors. Communications in Mathematics and Statistics 1-28 DOI:10.1007/s40304-024-00422-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

AitchisonJThe Statistical Analysis of Compositional Data, 1986LondonChapman and Hall London.

[2]

AitchisonJ, GreenacreM. Biplots of compositional data. J. R. Stat. Soc. Ser. C, 2002, 51: 375-392.

[3]

BuraE, CookRD. Extending sliced inverse regression: the weighted Chi-squared test. J. Am. Stat. Assoc., 2001, 96: 996-1003.

[4]

CookRDRegression Graphics: Ideas for Studying Regressions Through Graphics, 1998New YorkWiley.

[5]

CookRD. Fisher lecture: dimension reduction in regression. Stat. Sci., 2007, 22: 1-40

[6]

CookRD, ForzaniL. Principal fitted components for dimension reduction in regression. Stat. Sci., 2008, 23: 485-501.

[7]

CookRD, WeisbergS. Sliced inverse regression for dimension reduction: comment. J. Am. Stat. Assoc., 1991, 86: 328-332

[8]

Egozcue, J.J., Pawlowsky-Glahn, V., Mateu-Figueras, G., Barcelo´\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\acute{o}$$\end{document}-Vidal, C.: Isometric logratio transformations for compositional data analysis: Math. Geol. 35, 279–300 (2003)

[9]

FilzmoserP. Robust principal component and factor analysis in the geostatistical treatment of environmental data. Environmetrics, 1999, 10: 363-375.

[10]

FilzmoserP, HronK, ReimannC. Principal component analysis for compositional data with outliers. Environmetrics, 2009, 20: 621-632.

[11]

FisherAGB. Production, primary, secondary and tertiary production. Econ. Record, 1939, 15: 24-38.

[12]

GalloM. Coda in three-way arrays and relative sample spaces. Electron. J. Appl. Stat. Anal., 2012, 5: 401-406

[13]

LiB, ZhaH, ChiaromonteF. Contour regression: a general approach to dimension reduction. Ann. Stat., 2005, 33: 1580-1616.

[14]

LiK-C. Sliced inverse regression for dimension reduction. J. Am. Stat. Assoc., 1991, 86: 316-327.

[15]

LiY, ZhuL. Asymptotics for sliced average variance estimation. Ann. Stat., 2007, 35: 41-69.

[16]

LinW, ShiP, FengR, LiH. Variable selection in regression with compositional covariates. Biometrika, 2014, 101: 785-797.

[17]

MaY, ZhuL. A semiparametric approach to dimension reduction. J. Am. Stat. Assoc., 2012, 107: 168-179.

[18]

MaY, ZhuL. Efficient estimation in sufficient dimension reduction. Ann. Stat., 2013, 41: 250-268.

[19]

Pawlowsky-GlahnV, EgozcueJJ. Geometric approach to statistical analysis on the simplex. Stochast. Environ. Res. Risk Assess., 2001, 15: 384-398.

[20]

Pawlowsky-GlahnV , EgozcueJJ, Tolosana-DelgadoRModelling and Analysis of Compositional Data, 2015New YorkJohn Wiley & Sons.

[21]

PukelsheimF. Compositioanl proportionality among European political parties at European Parliament elections. Středoevropské Politické Studies, 2018, 20: 1-15

[22]

SchottJR. Determining the dimensionality in sliced inverse regression. J. Am. Stat. Assoc., 1994, 89: 141-148.

[23]

SuamiRB, SivalingamP, KabalaCD, OtamongaJ-P, MulajiCK, MpianaPT, PotéJ. Concentration of heavy metals in edible fishes from Atlantic Coast of Muanda, Democratic Republic of the Congo. J. Food Compos. Anal., 2018, 73: 1-9.

[24]

Tolosana-DelgadoR, EynattenHV. Simplifying compositional multiple regression: application to grain size controls on sediment geochemistry. Comput. Geosci., 2010, 36: 577-589.

[25]

VelillaS. Assessing the number of linear components in a general regression problem. J. Am. Stat. Assoc., 1998, 93: 1088-1098.

[26]

WangH, ShangguanL, GuanR, BillardL. Principal component analysis for compositional data vectors. Comput. Stat., 2015, 30: 1079-1096.

[27]

WangH, ShangguanL, WuJ, GuanR. Multiple linear regression modeling for compositional data. Neurocomputing, 2013, 122: 490-500.

[28]

WangH, WangZ, WangS. Sliced inverse regression method for multivariate compositional data modeling. Stat. Pap., 2020.

[29]

WangT, YangC, ZhaoH. Prediction analysis for microbiome sequencing data. Biometrics, 2019, 75: 875-884.

[30]

WangT, ZhaoH. Structured subcomposition selection in regression and its application to microbiome data analysis. Annals Appl. Stat., 2017, 11: 771-791.

[31]

XiaY, TongH, LiWK, ZhuL. An adaptive estimation of dimension reduction space (with discussion). J. Roy. Stat. Soc. B, 2002, 64: 363-410.

[32]

YinX, CookRD. Direction estimation in single-index regressions. Biometrika, 2005, 92: 371-384.

[33]

YinX, LiB, CookRD. Successive direction extraction for estimating the central subspace in a multipleindex regression. J. Multivar. Anal., 2008, 99: 1733-1757.

[34]

ZhuL, WangT, ZhuL, FérreL. Sufficient dimension reduction through discretization-expectation estimation. Biometrika, 2010, 97: 295-304.

[35]

ZhuL, YinX, ZhuL. Dimension reduction for correlated data: an alternating inverse regression. J. Comput. Graph. Stat., 2010, 19: 887-899.

[36]

ZhuL, ZhuL, FengZ. Dimension reduction in regressions through cumulative slicing estimation. J. Am. Stat. Assoc., 2010, 105: 1455-1466.

Funding

natural science foundation of shanghai(19ZR1437000)

shanghai rising-star program(20QA1407500)

national natural science foundation of china(11971018)

National Natural Science Foundation of China(11971017)

RIGHTS & PERMISSIONS

School of Mathematical Sciences, University of Science and Technology of China and Springer-Verlag GmbH Germany, part of Springer Nature

AI Summary AI Mindmap
PDF

120

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/