A trace Moser-Trudinger inequality on compact Riemannian surface with corners on its boundary

Tao Zhang , Chunqin Zhou , Xiaobao Zhu

Communications in Mathematics and Statistics ›› : 1 -34.

PDF
Communications in Mathematics and Statistics ›› : 1 -34. DOI: 10.1007/s40304-024-00415-4
Article

A trace Moser-Trudinger inequality on compact Riemannian surface with corners on its boundary

Author information +
History +
PDF

Abstract

In this paper, we establish a trace Moser-Trudinger inequality on a compact Riemann surface

Σ
with corners on
Σ
. It is also regarded as “trace imbedding inequality” when the boundary carries the conical sigularities. Besides, based on blow-up analysis, we prove the existence of extremal functions for this trace Moser-Trudinger inequality.

Keywords

Riemann surface with conical singularities / Blow-up analysis / Trace Moser-Trudinger inequality / Extremal function

Cite this article

Download citation ▾
Tao Zhang,Chunqin Zhou,Xiaobao Zhu. A trace Moser-Trudinger inequality on compact Riemannian surface with corners on its boundary. Communications in Mathematics and Statistics 1-34 DOI:10.1007/s40304-024-00415-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Adimurthi, Druet, O.: Blow-up analysis in dimension 2 and sharp form of Trudinger-Moser inequality. Commun. Partial Differ. Equ. 29, 295–322 (2004)

[2]

BecknerW. Sharp Sobolev inequalities on the sphere and the Moser-Trudinger inequality. Ann. Math., 1993, 138: 213-242

[3]

BrangesLD. A proof of the Bieberbach conjecture. Acta Math., 1985, 154: 137-152

[4]

CarlesonL, ChangA. On the existence of an extremal function for an inequality of J. Moser. Bull. Sci. Math., 1986, 110: 113-127

[5]

ChangA, YangC. Conformal deformation of metrics on S2\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$S^2$$\end{document}. J. Differ. Geom., 1988, 27: 259-296

[6]

Chen, L., Lu, G., Yang, Q., Zhu, M.: Sharp critical and subcritical trace Trudinger-Moser and Adams inequalities on the upper half spaces, arXiv:2108.04768

[7]

ChenW. A Trudinger inequality on surfaces with conical singularities. Proc. Amer. Math. Soc., 1990, 108: 821-832

[8]

CohnW, LuG. Best constants for Moser-Trudinger inequalities on the Heisenberg group. Indiana Univ. Math. J., 2001, 50: 1567-1591

[9]

CohnW, LuG. Sharp constants for Moser-Trudinger inequalities on spheres in complex space Cn\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$${\mathbb{C} }^n$$\end{document}. Commun. Pure Appl. Math., 2004, 57: 1458-1493

[10]

CsatóG, RoyP. Extremal functions for the singular Moser-Trudinger inequality in 2 dimensions. Calc. Var. Partial Differ. Equ., 2015, 54: 2341-2366

[11]

DjadliZ. Existence result for the mean field problem on Riemann surfaces of all genuses. Commun. Contemp. Math., 2008, 10: 205-220

[12]

DjadliZ, MalchiodiA. Existence of conformal metrics with constant Q-curvature. Ann. Math., 2008, 168: 813-858

[13]

FlucherM. Extremal functions for the Trudinger-Moser inequality in 2 dimensions. Comment. Math. Helv., 1992, 67: 471-479

[14]

FontanaL. Sharp borderline Sobolev inequalities on compact Riemannian manifolds. Comment. Math. Helv., 1993, 68: 415-454

[15]

HongCW. A best constant and the Gaussian curvature. Proc. Amer. Math. Soc., 1986, 97: 737-747

[16]

IulaS, ManciniG. Extremal functions for singular Moser-Trudinger embeddings. Nonlinear Anal., 2017, 156: 215-248

[17]

LamN, LuG. Sharp Moser-Trudinger inequality in the Heisenberg group at the critical case and applications. Adv. Math., 2012, 231: 3259-3287

[18]

LamN, LuG. A new approach to sharp Moser-Trudinger and Adams type inequalities: a rearrangement-free argument. J. Differ. Equ., 2013, 255: 298-325

[19]

LiJ, LuG. Critical and subcritical Trudinger-Moser inequalities on complete noncompact Riemannian manifolds. Adv. Math., 2021, 389: 107915

[20]

LiJ, LuG, ZhuM. Concentration-compactness principle for Trudinger-Moser’s inequalities on Riemannian manifolds and Heisenberg groups: a completely symmetrization-free argument. Adv. Nonlinear Stud., 2021, 21: 917-937

[21]

LiY. Moser-Trudinger inequality on compact Riemannian manifolds of dimension two. J. Partial Differ. Equ., 2001, 14: 163-192

[22]

LiY. Extremal functions for the Moser-Trudinger inequalities on compact Riemannian manifolds. Sci. China Ser. A, 2005, 48: 618-648

[23]

LiYX, LiuP. A Moser-Trudinger inequality on the boundary of a compact Riemann surface. Math. Z., 2005, 250: 363-386

[24]

LinK-C. Extremal functions for Moser’s inequality. Trans. Amer. Math. Soc., 1996, 348: 2663-2671

[25]

Liu, P.: A Moser-Trudinger type inequality and blow up analysis on compact Riemann surface, Doctoral thesis

[26]

Liu, P.: A Moser-Trudinger type inequality and blow up analysis on Riemann surfaces, dissertation, Der Fakultat fur Mathematik and Informatik der Universitat Leipzig (2001)

[27]

LuGZ, YangYY. Sharp constant and extremal functiion for the improved Moser-Trudinger inequality involving Lp\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$L^{p}$$\end{document} norm in two dimension. Discrete Contin. Dyn. Syst., 2009, 25: 963-979

[28]

MoserJ. A sharp form of an inequality by N. Trudinger, Indiana Univ. Math. J., 1971, 11: 1077-1092

[29]

OnofriE. On the positivity of the effective action in a theory of random surfaces. Commun. Math. Phys., 1982, 86: 321-326

[30]

OsgoodB, PhillipsR, SarnakP. Compact isospectral sets of plane domains. Proc. Natl. Acad. Sci. U.S.A., 1988, 85: 5359-5361

[31]

OsgoodB, PhillipsR, SarnakP. Compact isospectral sets of surfaces. J. Funct. Anal., 1988, 80: 212-234

[32]

OsgoodB, PhillipsR, SarnakP. Extremals of determinants of Laplacians. J. Funct. Anal., 1988, 80: 148-211

[33]

Pohozaev, S.: The Sobolev embedding in the special case pl=n\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$pl=n$$\end{document}. In: Proceedings of the Technical Scientific Conference on Advances of Scientific Research, Mathematics Sections. Moscow Energet Inst, Moscow, pp. 158–170 (1965)

[34]

StruweM. Critical points of embeddings of H01,n\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$H_0^{1, n}$$\end{document} into Orlicz spaces. Ann. Inst. H. Poincare Anal. Non Lineaire, 1988, 5: 425-464

[35]

TroyanovM. Prescribing curvature on compact surfaces with conical singularities. Trans. Amer. Math. Soc., 1991, 324: 793-821

[36]

TrudingerN. On imbeddings into Orlicz spaces and some applications. J. Math. Mech., 1967, 17: 473-483

[37]

WangGF, YeD. A hardy-Moser-Trudinger inequality. Adv. Math., 2012, 230: 294-320

[38]

YangYY. A sharp form of Moser-Trudinger inequality in high dimension. J. Funct. Anal., 2006, 239: 100-126

[39]

YangYY. Extremal functions for Trudinger-Moser inequalities of Adimurthi-Druet type in dimension two. J. Difffer. Equ., 2015, 258: 3161-3193

[40]

YangYY, ZhuXB. Blow-up analysis concerning singular Trudinger-Moser inequality in dimension two. J. Funct. Anal., 2017, 272: 3347-3374

[41]

YangYY, ZhuXB. An improved Hardy-Trudinger-Moser inequality. Ann. Glob. Ann. Geom., 2016, 49: 23-41

[42]

YudovichV. Some estimates connected with integral operators and with solutions of elliptic equations(in Russian). Dokl. Akad. Nauk., 1961, 138: 805-808

[43]

ZhangT, ZhouCQ. Classification of solutions for harmonic functions with Neumann boundary value. Can. Math. Bull., 2018, 61: 438-448

[44]

ZhuXB. A generalized Trudinger-Moser inequality on a compact Riemannian surface with conical singularities. Sci. China Math., 2019, 62: 699-718

Funding

national natural science foundation of china(12001472)

RIGHTS & PERMISSIONS

School of Mathematical Sciences, University of Science and Technology of China and Springer-Verlag GmbH Germany, part of Springer Nature

AI Summary AI Mindmap
PDF

113

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/