Statistical inference for discretely observed fractional diffusion processes with random effects

Mohamed El Omari , Hamid El Maroufy , Christiane Fuchs

Communications in Mathematics and Statistics ›› : 1 -15.

PDF
Communications in Mathematics and Statistics ›› : 1 -15. DOI: 10.1007/s40304-024-00414-5
Article

Statistical inference for discretely observed fractional diffusion processes with random effects

Author information +
History +
PDF

Abstract

We address statistical inference for linear fractional diffusion processes with random effects in the drift. In particular, we investigate maximum likelihood estimators (MLEs) of the random effect parameters. First of all, we estimate the Hurst parameter

H(0,1)
from one single subject. Second, assuming that the Hurst index
H(0,1)
is known, we derive the MLEs and examine their asymptotic behavior as the number of subjects under study becomes large, with random effects being normally distributed.

Keywords

Asymptotic normality / Fractional Brownian motion / Long-range memory process / Random effects model / Strong consistency / Mathematical Sciences / Statistics

Cite this article

Download citation ▾
Mohamed El Omari, Hamid El Maroufy, Christiane Fuchs. Statistical inference for discretely observed fractional diffusion processes with random effects. Communications in Mathematics and Statistics 1-15 DOI:10.1007/s40304-024-00414-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

AnticJ, LaffontCM, ChafaiD, CondorcetD. Comparison of nonparametric methods in nonlinear mixed effects models. Comput. Statist. Data Anal., 2009, 53: 642-656.

[2]

CoeurjollyJF. Estimating the parameters of a fractional Brownian motion by discrete variations of its sample paths. Stat. Inference Stoch. Process, 2001, 4: 199-227.

[3]

CollinsJJ, De LucaCJ. Upright, correlated random walks: a statistical-biomechanics approachto the human postural control system. Chaos, 1995, 5157-63.

[4]

ComteF, SamsonA. Nonparametric estimation of random effects densities in linear mixed-effects model. J. Nonparametr. Stat, 2012, 244951-975.

[5]

DelattreM, Genon-CatalotV, SamsonA. Maximum likelihood estimation for stochastic differential equations with random effects. Scand. J. Stat., 2012, 40: 322-343.

[6]

DitlevsenS, De GaetanoA. Mixed effects in stochastic differential equation models. REVSTAT - Statist. J., 2005, 3: 137-153

[7]

Genon-Catalot, V., Laredo, C.: Stationary distributions for stochastic differential equations with random effects and statistical applications. MAP5 -09(2013)

[8]

El Omari, M., El Maroufy, H. Fuchs, C.: Non-parametric estimation for fractional diffusion processes with random effects, Statistics, (2019)

[9]

GrangerCWJ. The typical spectral shape of an economic variable. Econometrica, 1966, 34: 150-161.

[10]

HuY, NualartD. Parameter estimation for fractional Ornstein-Uhlenbeck processes. Statist. Probab. Lett, 2010, 8011–121030-1038.

[11]

HuY, NualartD, XiaoW, ZhangW. Exact maximum likelihood estimator for drift fractional Brownian motion at discrete observation. Acta Math. Sci. Ser. B Engl. Ed, 2011, 3151851-1859

[12]

KleptsynaML, Le BretonA. Statistical analysis of the fractional Ornstein-Uhlenbeck type process. Stat. Inference Stoch. Process, 2002, 53229-248.

[13]

Kroese, D. P., Botev, Z.I.: Spatial process generation.(2013). available arXiv:1308.0399v1

[14]

KuklinskiWS, ChandraK, RuttimannUE. Application of fractal texture analysis to segmentation of dental radiographs SPIE. Med. Imaging III: Image Proc., 1989, 1092: 111-117

[15]

LiptserR, ShiryaevAStatistics of random processes II: general theory, 2001New YorkSpringer.

[16]

MandelbortB, Van NessW. Fractional Brownian motions, fractional noises and applications. SIAM Review, 1968, 10: 422-437.

[17]

McleodAI, HipelKW. Preservation of the rescaled adjusted range: a reassessment of the hurst exponent water resources. Research, 1978, 143491-508

[18]

MishuraYSStochastic calculus for fractional Brownian motion and related processes, Lecture Notes in Mathematics, 2008BerlinSpringer. 1929

[19]

NieL. Convergence rate of the MLE in generalized linear and nonlinear mixed-effects models: theory and applications. J. Statist. Plann. Inference, 2007, 137: 1787-1804.

[20]

PicchiniU, DitlevsenS. Practicle estimation of a high dimensional stochastic differential mixed-effects models. Comput. Statist. Data. Anal, 2011, 55: 1426-1444.

[21]

Prakasa RaoBLS. Parametric estimation for linear stochastic differential equations driven by fractional Brownian motion. Random Oper. Stoch. Equ, 2003, 113229-242.

[22]

Prakasa RaoBLSStatistical Inference for Fractional Diffusion Processes, 2010ChichesterWiley

[23]

TudorCA, ViensFG. Statistical aspects of the fractional stochastic calculus. Ann. Stat., 2007, 3531183-1212.

[24]

WillingerW, TaqquMS, LelandWE, WilsonDV. Self-similarity in high speed packet traffic: analysis and modelisation of ethernet traffic measurements. Stat. Sci., 1995, 10: 67-85.

[25]

XiaoW, YuJ. Asymptotic theory for estimating drift parameters in the fractional Vasicek model. Econ. Theory, 2018, 35: 1-34

Funding

Morocco-German Scientific program(PMARS III 2015/060)

RIGHTS & PERMISSIONS

School of Mathematical Sciences, University of Science and Technology of China and Springer-Verlag GmbH Germany, part of Springer Nature

AI Summary AI Mindmap
PDF

155

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/