Algebras Over a Symmetric Fusion Category and Integrations

Xiao-Xue Wei

Communications in Mathematics and Statistics ›› : 1 -67.

PDF
Communications in Mathematics and Statistics ›› : 1 -67. DOI: 10.1007/s40304-024-00412-7
Article

Algebras Over a Symmetric Fusion Category and Integrations

Author information +
History +
PDF

Abstract

We study the symmetric monoidal 2-category of finite semisimple module categories over a symmetric fusion category. In particular, we study

En
-algebras in this 2-category and compute their
En
-centers for
n=0,1,2
. We also compute the factorization homology of stratified surfaces with coefficients given by
En
-algebras in this 2-category for
n=0,1,2
satisfying certain anomaly-free conditions.

Keywords

Algebras / Centers / Symmetric monoidal 2-categories / Factorization homology / Mathematical Sciences / Pure Mathematics

Cite this article

Download citation ▾
Xiao-Xue Wei. Algebras Over a Symmetric Fusion Category and Integrations. Communications in Mathematics and Statistics 1-67 DOI:10.1007/s40304-024-00412-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

AyalaD, FrancisJ. Factorization homology of topological manifolds. J. Topol., 2015, 841045-1084.

[2]

Ayala, D., Francis, J.: A factorization homology primer. In: Handbook of Homotopy Theory. Chapman and Hall/CRC, 39–101 (2020)

[3]

AyalaD, FrancisJ, TanakaHL. Local structures on stratified spaces. Adv. Math., 2017, 307: 903-1028.

[4]

AyalaD, FrancisJ, TanakaHL. Factorization homology of stratified spaces. Sel. Math. New Ser., 2016, 231293-362.

[5]

AyalaD, FrancisJ, RozenblyumN. Factorization homology I: higher categories. Adv. Math., 2018, 333: 1024-1177.

[6]

AiY, KongL, ZhengH. Topological orders and factorization homology. Adv. Theor. Math. Phys., 2017, 2181854-1894.

[7]

Ben-ZviD, BrochierA, JordanD. Integrating Quantum groups over surfaces. J. Topol., 2018, 114874-917.

[8]

Ben-ZviD, BrochierA, JordanD. Quantum character varieties and braided module categories. Sel. Math. New Ser., 2018, 2454711-4748.

[9]

BeilinsonA, DrinfeldVChiral Algebras, 2004ProvidenceAmerican Mathematical Society.

[10]

Costello, K., Gwilliam, O.: Factorization algebras in quantum field theory. Vol. 1. New Mathematical Monographs, 31. Cambridge University Press, Cambridge(2017)

[11]

DrinfeldV, GelakiS, NikshychD, OstrikV. On braided fusion categoires I. Sel. Math. New Ser., 2010, 1611-119.

[12]

DavydovA, MügerM, NikshychD, OstrikV. The Witt group of non-degenerate braided fusion categories. Journal für die reine und angewandte Mathematik (Grelles Journal), 2013, 677: 135-177

[13]

DavydovA, NikshychD, OstrikV. On the structure of the Witt group of braided fusion categories. Sel. Math. New Ser., 2012, 191237-269.

[14]

EtingofP, GelakiS, NikshychD, OstrikVTensor Categories, 2015ProvidenceAmerican Mathematical Society.

[15]

EtingofP, NikshychD, OstrikV. Fusion categories and homotopy theory. Quantum Topol., 2010, 13209-273.

[16]

FrancisJ. The tangent complex and Hochschild cohomology of En\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$E_n$$\end{document}-rings. Compos. Math., 2013, 149: 430-480.

[17]

FrancisJ, GaitsgoryD. Chiral koszul duality. Sel. Math. New Ser., 2012, 18: 27-87.

[18]

GalindoC, HongS-M, RowellEC. Generalized and quasi-localizations of braid group representations. Int. Math. Res. Not., 2013, 3: 693-731.

[19]

JohnsonN, YauD2-Dimensional Categories, 2021OxfordOxford University Press.

[20]

KongL, ZhengH. The center functor is fully faithful. Adv. Math., 2018, 339: 749-779.

[21]

LurieJ. On the classification of topological field theories. Curr. Dev. Math., 2008, 1: 129-280.

[22]

LanT, KongL, WenX-G. Modular extensions of unitary braided fusion categories and 2+1D topological/SPT orders with symmetries. Commun. Math. Phys., 2016, 3512709-739.

[23]

SunL. The symmetric enriched center functor is fully faithful. Commun. Math. Phys., 2022, 395: 1345-1382.

[24]

SchaumannG. Traces on module categories over fusion categories. ScienceDirect, 2013, 379: 382-425

[25]

WenX-G. Choreographed entanglement dances: topological states of quantum matter. Science, 2019, 3636429eaal3099.

RIGHTS & PERMISSIONS

School of Mathematical Sciences, University of Science and Technology of China and Springer-Verlag GmbH Germany, part of Springer Nature

AI Summary AI Mindmap
PDF

175

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/