PDF
Abstract
We study the symmetric monoidal 2-category of finite semisimple module categories over a symmetric fusion category. In particular, we study \documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$E_n$$\end{document}
-algebras in this 2-category and compute their \documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$E_n$$\end{document}
-centers for \documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$n=0,1,2$$\end{document}
. We also compute the factorization homology of stratified surfaces with coefficients given by \documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$E_n$$\end{document}
-algebras in this 2-category for \documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$n=0,1,2$$\end{document}
satisfying certain anomaly-free conditions.
Keywords
Algebras
/
Centers
/
Symmetric monoidal 2-categories
/
Factorization homology
/
Mathematical Sciences
/
Pure Mathematics
Cite this article
Download citation ▾
Xiao-Xue Wei.
Algebras Over a Symmetric Fusion Category and Integrations.
Communications in Mathematics and Statistics 1-67 DOI:10.1007/s40304-024-00412-7
| [1] |
AyalaD, FrancisJ. Factorization homology of topological manifolds. J. Topol., 2015, 841045-1084.
|
| [2] |
Ayala, D., Francis, J.: A factorization homology primer. In: Handbook of Homotopy Theory. Chapman and Hall/CRC, 39–101 (2020)
|
| [3] |
AyalaD, FrancisJ, TanakaHL. Local structures on stratified spaces. Adv. Math., 2017, 307: 903-1028.
|
| [4] |
AyalaD, FrancisJ, TanakaHL. Factorization homology of stratified spaces. Sel. Math. New Ser., 2016, 231293-362.
|
| [5] |
AyalaD, FrancisJ, RozenblyumN. Factorization homology I: higher categories. Adv. Math., 2018, 333: 1024-1177.
|
| [6] |
AiY, KongL, ZhengH. Topological orders and factorization homology. Adv. Theor. Math. Phys., 2017, 2181854-1894.
|
| [7] |
Ben-ZviD, BrochierA, JordanD. Integrating Quantum groups over surfaces. J. Topol., 2018, 114874-917.
|
| [8] |
Ben-ZviD, BrochierA, JordanD. Quantum character varieties and braided module categories. Sel. Math. New Ser., 2018, 2454711-4748.
|
| [9] |
BeilinsonA, DrinfeldVChiral Algebras, 2004ProvidenceAmerican Mathematical Society.
|
| [10] |
Costello, K., Gwilliam, O.: Factorization algebras in quantum field theory. Vol. 1. New Mathematical Monographs, 31. Cambridge University Press, Cambridge(2017)
|
| [11] |
DrinfeldV, GelakiS, NikshychD, OstrikV. On braided fusion categoires I. Sel. Math. New Ser., 2010, 1611-119.
|
| [12] |
DavydovA, MügerM, NikshychD, OstrikV. The Witt group of non-degenerate braided fusion categories. Journal für die reine und angewandte Mathematik (Grelles Journal), 2013, 677: 135-177
|
| [13] |
DavydovA, NikshychD, OstrikV. On the structure of the Witt group of braided fusion categories. Sel. Math. New Ser., 2012, 191237-269.
|
| [14] |
EtingofP, GelakiS, NikshychD, OstrikVTensor Categories, 2015ProvidenceAmerican Mathematical Society.
|
| [15] |
EtingofP, NikshychD, OstrikV. Fusion categories and homotopy theory. Quantum Topol., 2010, 13209-273.
|
| [16] |
FrancisJ. The tangent complex and Hochschild cohomology of En\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$E_n$$\end{document}-rings. Compos. Math., 2013, 149: 430-480.
|
| [17] |
FrancisJ, GaitsgoryD. Chiral koszul duality. Sel. Math. New Ser., 2012, 18: 27-87.
|
| [18] |
GalindoC, HongS-M, RowellEC. Generalized and quasi-localizations of braid group representations. Int. Math. Res. Not., 2013, 3: 693-731.
|
| [19] |
JohnsonN, YauD2-Dimensional Categories, 2021OxfordOxford University Press.
|
| [20] |
KongL, ZhengH. The center functor is fully faithful. Adv. Math., 2018, 339: 749-779.
|
| [21] |
LurieJ. On the classification of topological field theories. Curr. Dev. Math., 2008, 1: 129-280.
|
| [22] |
LanT, KongL, WenX-G. Modular extensions of unitary braided fusion categories and 2+1D topological/SPT orders with symmetries. Commun. Math. Phys., 2016, 3512709-739.
|
| [23] |
SunL. The symmetric enriched center functor is fully faithful. Commun. Math. Phys., 2022, 395: 1345-1382.
|
| [24] |
SchaumannG. Traces on module categories over fusion categories. ScienceDirect, 2013, 379: 382-425
|
| [25] |
WenX-G. Choreographed entanglement dances: topological states of quantum matter. Science, 2019, 3636429eaal3099.
|
RIGHTS & PERMISSIONS
School of Mathematical Sciences, University of Science and Technology of China and Springer-Verlag GmbH Germany, part of Springer Nature
Just Accepted
This article has successfully passed peer review and final editorial review, and will soon enter typesetting, proofreading and other publishing processes. The currently displayed version is the accepted final manuscript. The officially published version will be updated with format, DOI and citation information upon launch. We recommend that you pay attention to subsequent journal notifications and preferentially cite the officially published version. Thank you for your support and cooperation.