Approximation Properties for Blended B-Splines on Unstructured Quadrilateral Mesh

Ke Wang , Xin Li

Communications in Mathematics and Statistics ›› : 1 -20.

PDF
Communications in Mathematics and Statistics ›› : 1 -20. DOI: 10.1007/s40304-024-00407-4
Article

Approximation Properties for Blended B-Splines on Unstructured Quadrilateral Mesh

Author information +
History +
PDF

Abstract

In this paper, the approximation properties for blended B-splines on unstructured quadrilateral mesh are analyzed. It is demonstrated that the blended B-splines can generate bi-cubic polynomials when being applied on regular and irregular elements. Moreover, the construction of dual basis for standard B-splines is extended to blended B-splines and the boundedness of the corresponding linear functional is established. Finally, the blended B-splines exhibit the optimal convergence in both the parametric and physical domains.

Cite this article

Download citation ▾
Ke Wang, Xin Li. Approximation Properties for Blended B-Splines on Unstructured Quadrilateral Mesh. Communications in Mathematics and Statistics 1-20 DOI:10.1007/s40304-024-00407-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bazilevs Y, Veiga L, Cottrell JA, Hughes TJ, Sangalli G. Isogeometric analysis: approximation, stability and error estimates for h-refined meshes. Math. Models Methods Appl. Sci., 2006, 16(07): 1031-1090

[2]

Brenner SC. The Mathematical Theory of Finite Element Methods, 2008 New York Springer

[3]

Burkhart, D., Hamann, B., Umlauf, G.: Iso-geometric finite element analysis based on Catmull–Clark subdivision solids. In: Computer Graphics Forum, vol. 29, pp. 1575–1584. Wiley Online Library (2010)

[4]

Collin A, Sangalli G, Takacs T. Analysis-suitable $G^1$ multi-patch parametrizations for $C^1$ isogeometric spaces. Comput. Aided Geomet. Design, 2016, 47: 93-113

[5]

Collin A, Sangalli G, Takacs T. Approximation properties of multi-patch $G^1$ isogeometric spaces. Comput. Aided Geom. Des, 2016, 47: 93-113

[6]

Da Veiga LB, Cho D, Sangalli G. Anisotropic NURBS approximation in isogeometric analysis. Comput. Methods Appl. Mech. Eng., 2012, 209: 1-11

[7]

Da Veiga LB, Buffa A, Sangalli G, Vázquez R. Mathematical analysis of variational isogeometric methods. Acta Numer., 2014, 23: 157-287

[8]

Deng, F., Yang, T., Liu, J., Deng, J.: Isogeometric analysis on implicit domains: approximation, stability and error estimates. Commun. Math. Stat. 1–26 (2023)

[9]

Deng J, Chen F, Li X, Hu C, Tong W, Yang Z, Feng Y. Polynomial splines over hierarchical T-meshes. Graph. Models, 2008, 74: 76-86

[10]

Dokken T, Lyche T, Pettersen KF. Polynomial splines over locally refined box-partitions. Comput. Aided Geomet. Design, 2013, 30: 331-356

[11]

Evans JA, Bazilevs Y, Babuška I, Hughes TJR. n-Widths, sup-infs, and optimality ratios for the k-version of the isogeometric finite element method. Comput. Methods Appl. Mech. Eng., 2009, 198(21–26): 1726-1741

[12]

Giannelli C, Jüttler B, Speleers H. THB-splines: the truncated basis for hierarchical splines. Comput. Aided Geomet. Design, 2012, 29(7): 485-498

[13]

Hughes TJ, Cottrell JA, Bazilevs Y. Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Comput. Methods Appl. Mech. Eng., 2005, 194(39–41): 4135-4195

[14]

Kang H, Li X, Deng J, Chen F. Truncated hierarchical Loop subdivision surfaces and application in isogeometric analysis. Comput. Math. Appl., 2016, 72: 2041-2055

[15]

Kapl M, Buchegger F, Bercovier M, Jüttler B. Isogeometric analysis with geometrically continuous functions on planar multi-patch geometries. Comput. Methods Appl. Mech. Eng., 2017, 316: 209-234

[16]

Kapl M, Sangalli G, Takacs T. Construction of analysis-suitable $G^1$ planar multi-patch parameterizations. Comput. Aided Des., 2018, 97: 41-55

[17]

Li X, Li X. AS++ T-splines: arbitrary degree, nestedness and approximation. Numer. Math., 2021, 148: 795-816

[18]

Li X, Zheng J, Sederberg TW, Hughes TJR, Scott MA. On the linear independence of T-splines blending functions. Comput. Aided Geomet. Design, 2012, 29: 63-76

[19]

Lipton S, Evans JA, Bazilevs Y, Elguedj T, Hughes TJR. Robustness of isogeometric structural discretizations under severe mesh distortion. Comput. Methods Appl. Mech. Eng., 2010, 199(5–8): 357-373

[20]

Liu, J., Deng, F., Ma, H., Deng, J.: Isogeometric analysis using basis functions of splines spaces over hierarchical t-meshes with high level differences. Commun. Math. Stat. 1–28 (2023)

[21]

Ma, S., Xu, J., Xu, G.: Fast isogeometric method for fluid–structure interaction simulation of heart valves with gift framework. Commun. Math. Stat. 1–25 (2023)

[22]

Ma Y, Ma W. A subdivision scheme for unstructured quadrilateral meshes with improved convergence rate for isogeometric analysis. Graph. Models, 2019, 106 101043

[23]

Majeed M, Cirak F. Isogeometric analysis using manifold-based smooth basis functions. Comput. Methods Appl. Mech. Eng., 2017, 316: 547-567

[24]

Morganti S, Auricchio F, Benson D, Gambarin F, Hartmann S, Hughes T, Reali A. Patient-specific isogeometric structural analysis of aortic valve closure. Comput. Methods Appl. Mech. Eng., 2015, 284: 508-520

[25]

Riffnaller-Schiefer A, Augsdorfer UH, Fellner DW. Isogeometric shell analysis with NURBS compatible subdivision surfaces. Appl. Math. Comput., 2016, 272: 139-147

[26]

Schillinger D, Dede L, Scott MA, Evans JA, Borden MJ, Rank E, Hughes TJ. An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Comput. Methods Appl. Mech. Eng., 2012, 249: 116-150

[27]

Schumaker L. Spline Functions: Basic Theory, 2007 Cambridge Cambridge University Press

[28]

Scott MA, Simpson RN, Evans JA, Lipton S, Bordas SPA, Hughes TJR, Sederberg TW. Isogeometric boundary element analysis using unstructured T-splines. Comput. Methods Appl. Mech. Eng., 2013, 254: 197-221

[29]

Sederberg TW, Cardon DL, Finnigan GT, North NS, Zheng J, Lyche T. T-spline simplification and local refinement. ACM Trans. Graphics, 2004, 23(3): 276-283

[30]

Toshniwal D, Speleers H, Hughes TJ. Smooth cubic spline spaces on unstructured quadrilateral meshes with particular emphasis on extraordinary points: Geometric design and isogeometric analysis considerations. Comput. Methods Appl. Mech. Eng., 2017, 327: 411-458

[31]

Warren J, Weimer H. Subdivision Methods for Geometric Design, 2002 Netherlands Morgan Kaufmann

[32]

Wei X, Zhang YJ, Toshniwal D, Speleers H, Li X, Manni C, Evans JA, Hughes TJ. Blended B-spline construction on unstructured quadrilateral and hexahedral meshes with optimal convergence rates in isogeometric analysis. Comput. Methods Appl. Mech. Eng., 2018, 341: 609-639

[33]

Wei X, Li X, Zhang YJ, Hughes TJ. Tuned hybrid nonuniform subdivision surfaces with optimal convergence rates. Int. J. Numer. Meth. Eng., 2021, 122(9): 2117-2144

[34]

Zhang J, Li X. On the linear independence and partition of unity of arbitrary degree analysis-suitable T-splines. Commun. Math. Stat., 2015, 3(3): 353-364

[35]

Zheng T, Li X. Isogeometric topology optimization based on deep learning. Commun. Math. Stat., 2022, 10(3): 543-564

RIGHTS & PERMISSIONS

School of Mathematical Sciences, University of Science and Technology of China and Springer-Verlag GmbH Germany, part of Springer Nature

AI Summary AI Mindmap
PDF

200

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/