Spatial Autologistic Model with Generalized Dependent Parameter

Liang Fang , Zaiying Zhou , Yiping Hong

Communications in Mathematics and Statistics ›› : 1 -27.

PDF
Communications in Mathematics and Statistics ›› : 1 -27. DOI: 10.1007/s40304-023-00391-1
Article

Spatial Autologistic Model with Generalized Dependent Parameter

Author information +
History +
PDF

Abstract

In the spatial autologistic model, the dependence parameter is often assumed to be a single value. To construct a spatial autologistic model with spatial heterogeneity, we introduce additional covariance in the dependence parameter, and the proposed model is suitable for the data with binary responses where the spatial dependency pattern varies with space. Both the maximum pseudo-likelihood (MPL) method for parameter estimation and the Bayesian information criterion (BIC) for model selection are provided. The exponential consistency between the maximum likelihood estimator and the maximum block independent likelihood estimator (MBILE) is proved for a particular case. Simulation results show that the MPL algorithm achieves satisfactory performance in most cases, and the BIC algorithm is more suitable for model selection. We illustrate the application of our proposed model by fitting the Bur Oak presence data within the driftless area in the midwestern USA.

Keywords

Spatial autologistic model / Maximum pseudolikelihood / Dependence parameter / Spatial heterogeneity

Cite this article

Download citation ▾
Liang Fang, Zaiying Zhou, Yiping Hong. Spatial Autologistic Model with Generalized Dependent Parameter. Communications in Mathematics and Statistics 1-27 DOI:10.1007/s40304-023-00391-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Augustin NH, Mugglestone MA, Buckland ST. An autologistic model for the spatial distribution of wildlife. J. Appl. Ecol.. 1996, 33 2 339-347

[2]

Bardos DC, Guillera-Arroita G, Wintle BA. Valid auto-models for spatially autocorrelated occupancy and abundance data. Methods Ecol. Evol.. 2015, 6 10 1137-1149

[3]

Bera, A.K., Dogan, O., Taspinar, S.: Testing spatial dependence in spatial models with endogenous weights matrices. SSRN Electron. J. (2018)

[4]

Besag JE. Spatial interaction and the statistical analysis of lattice systems. J. R. Stat. Soc. Ser. B (Methodol.). 1974, 36 2 192-236

[5]

Bo Y-C, Song C, Wang J-F, Li X-W. Using an autologistic regression model to identify spatial risk factors and spatial risk patterns of hand, foot and mouth disease (HFMD) in Mainland China. BMC Public Health. 2014, 14 358

[6]

Bourdo EA. A review of the general land office survey and of its use in quantitative studies of former forests. Ecology. 1956, 37 4 754-768

[7]

Caragea PC, Berg E. A centered bivariate spatial regression model for binary data with an application to presettlement vegetation data in the midwestern United States. J. Agric. Biol. Environ. Stat.. 2014, 19 4 453-471

[8]

Caragea PC, Kaiser MS. Autologistic models with interpretable parameters. J. Agric. Biol. Environ. Stat.. 2009, 14 3 281-300

[9]

Comets F. On consistency of a class of estimators for exponential families of Markov random fields on the lattice. Ann. Stat.. 1992, 20 1 455-468

[10]

Gumpertz ML, Graham JM, Ristaino JB. Autologistic model of spatial pattern of phytophthora epidemic in bell pepper: Effects of soil variables on disease presence. J. Agric. Biol. Environ. Stat.. 1997, 2 2 131-156

[11]

Hanks EM, Hooten MB. Circuit theory and model-based inference for landscape connectivity. J. Am. Stat. Assoc.. 2013, 108 501 22-33

[12]

Hoef JMV, Peterson EE, Hooten MB, Hanks EM, Fortin M-J. Spatial autoregressive models for statistical inference from ecological data. Ecol. Monogr.. 2018, 88 1 36-59

[13]

Hughes J, Haran M, Caragea PC. Autologistic models for binary data on a lattice. Environmetrics. 2011, 22 7 857-871

[14]

Komori O, Eguchi S, Ikeda S, Okamura H, Ichinokawa M, Nakayama S. An asymmetric logistic regression model for ecological data. Methods Ecol. Evol.. 2016, 7 2 249-260

[15]

Lim J, Lee K, Yu D, Liu H, Sherman M. Parameter estimation in the spatial auto-logistic model with working independent subblocks. Comput. Stat. Data Anal.. 2012, 56 12 4421-4432

[16]

Ma Z, Zuckerberg B, Porter WF, Zhang L. Spatial Poisson models for examining the influence of climate and land cover pattern on bird species richness. For. Sci.. 2012, 58 1 61-74

[17]

Moon S, Russell G. Predicting product purchase from inferred customer similarity: an autologistic model approach. Manag. Sci.. 2008, 54 1 71-82

[18]

Nelder JA, Mead R. A simplex method for function minimization. Comput. J.. 1965, 7 4 308-313

[19]

Paciorek CJ, Schervish MJ. Spatial modelling using a new class of nonstationary covariance functions. Environmetrics. 2006, 17 5 483-506

[20]

Parker RJ, Reich BJ, Eidsvik J. A fused Lasso approach to nonstationary spatial covariance estimation. J. Agric. Biol. Environ. Stat.. 2016, 21 3 569-587

[21]

Shin YE, Sang H, Liu D, Ferguson TA, Song PXK. Autologistic network model on binary data for disease progression study. Biometrics. 2019, 75 4 1310-1320

[22]

Tepe E, Guldmann J-M. Spatio-temporal multinomial autologistic modeling of land-use change: a parcel-level approach. Environ. Plan. B Urban Anal. City Sci.. 2020, 47 3 473-488

[23]

Wang Z, Zheng Y. Analysis of binary data via a centered spatial-temporal autologistic regression model. Environ. Ecol. Stat.. 2013, 20 1 37-57

[24]

Wolters MA. Better autologistic regression. Front. Appl. Math. Stat.. 2017, 3 24

Funding

National Social Science Fund of China(21BGL164)

National Natural Science Foundation of China(12771286)

AI Summary AI Mindmap
PDF

153

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/