$\sigma $-soluble group,Weak Robinson $\sigma $-complex,$\sigma $-permutable subgroup,$P\sigma T$-group" /> $\sigma $-soluble group" /> $\sigma $-complex" /> $\sigma $-permutable subgroup" /> $P\sigma T$-group" /> $\sigma $-soluble group,Weak Robinson $\sigma $-complex,$\sigma $-permutable subgroup,$P\sigma T$-group" />

On One Open Question of the Theory of $\sigma $-Properties of a Finite Group

A.-Ming Liu , Zhigang Wang , Vasily G. Safonov , Alexander N. Skiba

Communications in Mathematics and Statistics ›› : 1 -16.

PDF
Communications in Mathematics and Statistics ›› : 1 -16. DOI: 10.1007/s40304-023-00390-2
Article

On One Open Question of the Theory of $\sigma $-Properties of a Finite Group

Author information +
History +
PDF

Abstract

Let $\sigma =\{\sigma _{i} \mid i\in I\}$ be some partition of the set of all primes and G a finite group. A subgroup A of G is $\sigma $-permutable in G provided G is $\sigma $-full; that is, G has a Hall $\sigma _{i}$-subgroup for all $i\in I$ and A permutes with all such Hall subgroups H of G; that is, $AH=HA$. Answering the Question 6.4 in Skiba (Probl Phys Math Tech 42(21):89–96, 2014), we get a description of finite $\sigma $-full groups G in which $\sigma $-permutability is a transitive relation.

Keywords

Finite group / $\sigma $-soluble group')">$\sigma $-soluble group / $\sigma $-complex')">Weak Robinson $\sigma $-complex / $\sigma $-permutable subgroup')">$\sigma $-permutable subgroup / $P\sigma T$-group')">$P\sigma T$-group

Cite this article

Download citation ▾
A.-Ming Liu, Zhigang Wang, Vasily G. Safonov, Alexander N. Skiba. On One Open Question of the Theory of $\sigma $-Properties of a Finite Group. Communications in Mathematics and Statistics 1-16 DOI:10.1007/s40304-023-00390-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Adarchenko NM. A new characterization of finite $\sigma $-soluble $P\sigma T$-groups. Algebra Discrete Math.. 2020, 29 1 33-41

[2]

Agrawal RK. Finite groups whose subnormal subgroups permute with all Sylow subgroups. Proc. Amer. Math. Soc.. 1975, 47 77-83

[3]

Ballester-Bolinches A, Ezquerro LM. Classes of Finite groups. 2006 Dordrecht: Springer

[4]

Ballester-Bolinches A, Pedraza-Aguilera MC, Pèrez-Calabuing V. On two classes of generalized $T$-groups. Revista de la Real Academia de Ciencias Exactas Fisicas y Naturales. Serie A. Matematicas. 2023, 117 105

[5]

Ballester-Bolinches A, Beidleman JC, Heineken H. Groups in which Sylow subgroups and subnormal subgroups permute, Special issue in honor of Reinhold Baer (1902–1979). Illinois J. Math.. 2003, 47 1–2 63-69

[6]

Ballester-Bolinches A, Esteban-Romero R, Asaad M. Products of Finite Groups. 2010 Berlin-New York: Walter de Gruyter

[7]

Doerk K, Hawkes T. Finite Soluble Groups. 1992 Berlin-New York: Walter de Gruyter

[8]

Guo W. Structure Theory for Canonical Classes of Finite Groups. 2015 Heidelberg-New York-Dordrecht-London: Springer

[9]

Guo W, Skiba AN. On $\sigma $-supersoluble groups and one generalization of $CLT$-groups. J. Algebra. 2018, 512 92-108

[10]

Gorenstein D . Finite Simple Groups. An Introduction to Their Classification. 1982 New York: Plenum Press

[11]

Huppert B. Endliche Gruppen I. 1967 Berlin-Heidelberg-New York: Springer-Verlag

[12]

Huppert B, Blackburn N. Finite Groups III. 1982 Berlin, New-York: Springer-Verlag

[13]

Hu B, Huang J, Skiba AN. On two open problems of the theory of permutable subgroups of finite groups. Publ. Math. Debrecen. 2019, 94 3–4 477-491

[14]

Knyagina BN, Monakhov VS. On $\pi ^{\prime }$-properties of finite groups having a Hall $\pi $-subgroup. Siberian Math. J.. 2011, 52 2 234-243

[15]

Li H , Liu A-M, Safonova IN, Skiba AN. Characterizations of some classes of finite $\sigma $-soluble $P\sigma T$-groups. Commun. Algebra. 2023

[16]

Liu A-M, Guo W, Safonova IN, Skiba AN. $G$-covering subgroup systems for some classes of $\sigma $-soluble groups. J. Algebra. 2021, 585 280-293

[17]

Robinson DJS. The structure of finite groups in which permutability is a transitive relation. J. Austral. Math. Soc.. 2001, 70 143-159

[18]

Skiba AN. On $\sigma $-properties of finite groups I. Probl. Phys. Math. Techn.. 2014, 4 21 89-96

[19]

Skiba AN. On $\sigma $-subnormal and $\sigma $-permutable subgroups of finite groups. J. Algebra. 2015, 436 1-16

[20]

Skiba AN. On some results in the theory of finite partially soluble groups. Commun. Math. Stat.. 2016, 4 3 281-309

[21]

Skiba AN. Some characterizations of finite $\sigma $-soluble $P\sigma T$-groups. J. Algebra. 2018, 495 1 114-129

[22]

Skiba AN. On sublattices of the subgroup lattice defined by formation Fitting sets. J. Algebra. 2020, 550 69-85

[23]

Weinstein M . Between Nilpotent and Solvable. 1982 Edinburgh: Polygonal Publishing House

[24]

Zhang X-F, Guo W, Safonova IN, Skiba AN. A Robinson description of finite $P\sigma T$-groups. J. Algebra. 2023, 631 218-235

[25]

Zhu X , Cao C, Guo W. Finite $\sigma $-soluble groups in which $\sigma $-permutability is a transitive relation. J. Algebra Appl.. 2019, 18 4 1950064

Funding

National Natural Science Foundation of China(12171126)

Belarusian Republican Foundation for Fundamental Research(F23RNF-237)

Ministry of Education of the Republic of Belarus(20211328)

AI Summary AI Mindmap
PDF

112

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/