Some Remarks on Projective Representations of Compact Groups and Frames

Chuangxun Cheng , Guilin Li

Communications in Mathematics and Statistics ›› : 1 -36.

PDF
Communications in Mathematics and Statistics ›› : 1 -36. DOI: 10.1007/s40304-023-00381-3
Article

Some Remarks on Projective Representations of Compact Groups and Frames

Author information +
History +
PDF

Abstract

In this paper, we study continuous frames with symmetries from projective representations of compact groups. In particular, we study maximal spanning vectors in detail and we prove the existence of maximal spanning vectors for irreducible projective representations of compact abelian groups by a dimension counting method.

Keywords

Continuous frame / Fourier transform / Maximal spanning vector / Projective representation / The Peter–Weyl theorem

Cite this article

Download citation ▾
Chuangxun Cheng, Guilin Li. Some Remarks on Projective Representations of Compact Groups and Frames. Communications in Mathematics and Statistics 1-36 DOI:10.1007/s40304-023-00381-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Balan. R.: Frames and phaseless reconstruction. Finite frame theory. In: Proceedings of Symposia in Applied Mathematics, vol. 73, AMS Short Course Lecture Notes, pp. 175–199. American Mathematical Society, Providence, RI (2016)

[2]

Balan R, Bodmann BG, Casazza PG, Edidin D. Painless reconstruction from magnitudes of frame vectors. J. Fourier Anal. Appl.. 2009, 15 488-501

[3]

Blackadar B. Operator Algebras: Theory of $C^*$-Algebras and von Neumann Algebras Encyclopedia of Mathematical Sciences. 2017 Berlin: Springer

[4]

Bodmann, B.G., Casazza, P.G., Edidin, D., Balan, R.: Frames for linear reconstruction without phase. In: Conference on Information Sciences and Systems, pp. 721–726 (2009)

[5]

Casazza PG , Kutyniok G, Philipp F. Casazza PG, Kutyniok G. Introduction to finite frame theory. Finite Frames. Applied and Numerical Harmonic Analysis. 2013 Boston: Birkhäuser. 1-53

[6]

Cheng C. A character theory for projective representations of finite groups. Linear Algebra Appl.. 2015, 469 15 230-242

[7]

Cheng C, Han D. On twisted group frames. Linear Algebra Appl.. 2019, 569 285-310

[8]

Cheng C, Lo W, Xu H. Phase retrieval for continuous Gabor frames on locally compact abelian groups. Banach J. Math. Anal.. 2021, 15 32

[9]

Cheng C, Lu J. On the existence of maximal spanning vectors in $L^2({\mathbb{Q} }_2)$ and $L^2({\mathbb{F} }_2((T)))$. J. Number Theory. 2023, 245 187-202

[10]

Folland GB. A Course in Abstract Harmonic Analysis. 1995 2 Boca Raton: CRC Press

[11]

Führ, H., Oussa, V.: Phase Retrieval for Nilpotent Groups. arXiv:2201.08654

[12]

Gabardo J-P, Han D. Frame representations for group-like unitary operator systems. J. Oper. Theory. 2003, 49 223-244

[13]

Hardy GH, Littlewood JE, Pólya G. Inequalities. 1934 Cambridge: University Press

[14]

Iverson JW. Frames generated by compact group actions. Trans. Am. Math. Soc.. 2018, 370 1 509-551

[15]

Iverson JW, Jasper J, Mixon DG. Optimal line packings from finite group actions. Forum Math. Sigma. 2020, 8 e6

[16]

Kleppner A. Continuity and measurability of multiplier and projective representations. J. Funct. Anal.. 1974, 17 214-226

[17]

Kleppner A, Lipsman R. The Plancherel formula for group extensions. Annales scientifiques de l’É.N.S. 4e série. 1972, 5 3 459-516

[18]

Li L, Juste T, Brennan J, Cheng C, Han D. Phase retrievable projective representation frames for finite abelian groups. J. Fourier Anal. Appl.. 2019, 25 1 86-100

[19]

Murnaghan, F.: Representations of Compact Groups. Lecture Notes. www.math.toronto.edu/murnaghan/courses/mat445/ch6.pdf

[20]

Rahimi A, Najati A, Dehghan YN. Continuous frames in Hilbert spaces. Methods Funct. Anal. Topol.. 2006, 12 2 170-182

[21]

Serre JP. Linear Representations of Finite Groups. Graduate Text in Mathematics. 1977 Berlin: Springer

[22]

Vale R, Waldron S. Tight frames generated by finite nonabelian groups. Numer. Algor.. 2008, 48 11-27

[23]

Waldron S. Casazza PG, Kutyniok G. Group frames. Finite Frames. Applied and Numerical Harmonic Analysis. 2013 Boston: Birkhäuser. 171-191

[24]

Waldron S. The Fourier transform of a projective group frame. Appl. Comput. Harmon. Anal.. 2020, 49 1 74-98

Funding

NSFC(12071221)

AI Summary AI Mindmap
PDF

58

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/