Semi-Functional Partial Linear Quantile Regression Model with Randomly Censored Responses

Nengxiang Ling , Jintao Yang , Tonghui Yu , Hui Ding , Zhaoli Jia

Communications in Mathematics and Statistics ›› : 1 -28.

PDF
Communications in Mathematics and Statistics ›› : 1 -28. DOI: 10.1007/s40304-023-00377-z
Article

Semi-Functional Partial Linear Quantile Regression Model with Randomly Censored Responses

Author information +
History +
PDF

Abstract

Censored data with functional predictors often emerge in many fields such as biology, neurosciences and so on. Many efforts on functional data analysis (FDA) have been made by statisticians to effectively handle such data. Apart from mean-based regression, quantile regression is also a frequently used technique to fit sample data. To combine the strengths of quantile regression and classical FDA models and to reveal the effect of the functional explanatory variable along with nonfunctional predictors on randomly censored responses, the focus of this paper is to investigate the semi-functional partial linear quantile regression model for data with right censored responses. An inverse-censoring-probability-weighted three-step estimation procedure is proposed to estimate parametric coefficients and the nonparametric regression operator in this model. Under some mild conditions, we also verify the asymptotic normality of estimators of regression coefficients and the convergence rate of the proposed estimator for the nonparametric component. A simulation study and a real data analysis are carried out to illustrate the finite sample performances of the estimators.

Keywords

Functional data analysis / Quantile regression / Semi-functional partial linear model / Random censorship / Asymptotic properties

Cite this article

Download citation ▾
Nengxiang Ling, Jintao Yang, Tonghui Yu, Hui Ding, Zhaoli Jia. Semi-Functional Partial Linear Quantile Regression Model with Randomly Censored Responses. Communications in Mathematics and Statistics 1-28 DOI:10.1007/s40304-023-00377-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Aneiros-Pérez G, Cao R, Fraiman R, Genest C, Vieu P. Recent advances in functional data analysis and high-dimensional statistics. J. Multivar. Anal.. 2019, 170 3-9

[2]

Aneiros-Pérez G, Vieu P. Automatic estimation procedure in partial linear model with functional data. Stat. Pap.. 2011, 52 4 751-771

[3]

Bongiorno EG, Salinelli E, Goia A, Vieu P. Contributions in infinite-dimensional statistics and related topics. 2014 Bologna: Societa Editrice Esculapio

[4]

Bravo F. Semiparametric quantile regression with random censoring. Ann. Inst. Stat. Math.. 2020, 72 1 265-295

[5]

Bang H, Tsiatis AA. Median regression with censored cost data. Biometrics. 2002, 58 3 643-649

[6]

Chaouch M, Khardani S. Randomly censored quantile regression estimation using functional stationary ergodic data. J. Nonparametric Stat.. 2015, 27 1 65-87

[7]

Chen K, Muller HG. Conditional quantile analysis when covariates are functions, with application to growth data. J. Royal Stat. Soc. : Ser. B. 2012, 74 1 67-89

[8]

Ding H, Lu Z, Zhang J, Zhang R. Semi-functional partial linear quantile regression. Stat. Probab. Lett.. 2018, 142 92-101

[9]

Du J, Zhang Z, Xu D. Estimation for the censored partially linear quantile regression models. Commun. Stat. -Simul. Comput.. 2018, 47 8 2393-2408

[10]

Ferraty F, Laksaci A, Tadj A, Vieu P. Rate of uniform consistency for nonparametric estimates with functional variables. J. Stat. Plan. Inference. 2010, 140 2 335-352

[11]

Ferraty F, Sued M, Vieu P. Mean estimation with data missing at random for functional covariables. Statistics. 2013, 47 4 688-706

[12]

Ferraty F, Vieu P. Nonparametric Functional Data Analysis: Theory and Practice. 2006 Cham: Springer Science Business Media

[13]

Feng H, Luo Q. A weighted quantile regression for nonlinear models with randomly censored data. Commun. Stat. -Theory Methods. 2021, 50 18 4167-4179

[14]

Horvath L, Kokoszka P. Inference for Fctional Data with Applications. 2012 New York: Springer

[15]

Hsing T, Eubank R. Theoretical Foundations of Functional Data Analysis, with An Introduction to Linear Operators. 2015 London: Wiley

[16]

Jiang F, Cheng Q, Yin G, Shen H. Functional censored quantile regression. J. Am. Stat. Assoc.. 2020, 115 530 931-944

[17]

Kai B, Li R, Zou H. New efficient estimation and variable selection methods for semiparametric varying-coefficient partially linear models. Ann. Stat.. 2011, 39 1 305

[18]

Kaplan EL, Meier P. Nonparametric estimation from incomplete observations. J. Am. Stat. Assoc.. 1958, 53 282 457-481

[19]

Kong D, Ibrahim JG, Lee E, Zhu H. FLCRM: functional linear cox regression model. Biometrics. 2018, 74 1 109-117

[20]

Kato K. Estimation in functional linear quantile regression. Ann. Stat.. 2012, 40 6 3108-3136

[21]

Knight K. Limiting distributions for L1 regression estimators under general conditions. Ann. Stat.. 1998, 26 755-770

[22]

Koenker R, Bassett G Jr. Regression quantiles. Econom.: J. Econom. Soc.. 1978, 46 33-50

[23]

Kraus D. Components and completion of partially observed functional data. J. Royal Stat. Soc.: Ser. B Stat. Methodol.. 2015, 77 777-801

[24]

Ling N, Liang L, Vieu P. Nonparametric regression estimation for functional stationary ergodic data with missing at random. J. Stat. Plan. Inference. 2015, 162 75-87

[25]

Ling N, Vieu P. Nonparametric modelling for functional data: selected survey and tracks for future. Statistics. 2018, 52 4 934-949

[26]

Liu H, Yang H, Xia X. Robust estimation and variable selection in censored partially linear additive models. J. Korean Stat. Soc.. 2017, 46 1 88-103

[27]

Lu Y, Du J, Sun Z. Functional partially linear quantile regression model. Metrika. 2014, 77 2 317-332

[28]

Portnoy S. Censored regression quantiles. J. Am. Stat. Assoc.. 2003, 98 464 1001-1012

[29]

Ramsay JO, Silverman BW. Functional Data Analysis. 2005 New York: Springer

[30]

Ramsay JO, Silverman BW. Applied Functional Data Analysis: Methods and Case Studies. 2002 New York: Springer

[31]

Sang P, Cao J. Functional single-index quantile regression models. Stati. Comput.. 2020, 30 1-11

[32]

Shi GM, Zhang ZZ, Xie TF. Estimation of functional partially linear quantile regression model with censored responses. Math. Pract. Theory. 2021, 51 3 152-166

[33]

Shows JH, Lu W, Zhang HH. Sparse estimation and inference for censored median regression. J. Stat. Plan. Inference. 2010, 140 7 1903-1917

[34]

Tang L, Zhou Z, Wu C. Weighted composite quantile estimation and variable selection method for censored regression model. Stat. Probab. Lett.. 2012, 82 3 653-663

[35]

Tang Q, Cheng L. Partial functional linear quantile regression. Sci. China Math.. 2014, 57 12 2589-2608

[36]

Van der Vaart AW. Asymptotic Statistics. 1998 Cambridge: Cambridge University Press

[37]

Wang HJ, Wang L. Locally weighted censored quantile regression. J. Am. Stat. Assoc.. 2009, 104 487 1117-1128

[38]

Xiao J, Xie T, Zhang Z. Estimation in partially observed functional linear quantile regression. J. Syst. Sci. Complex.. 2021, 35 1-29

[39]

Xu D, Du J. Nonparametric quantile regression estimation for functional data with responses missing at random. Metrika. 2020, 83 8 977-990

[40]

Yu D, Kong L, Mizera I. Partial functional linear quantile regression for neuroimaging data analysis. Neurocomputing. 2016, 195 74-87

[41]

Yu P, Li T, Zhu Z, Zhang Z. Composite quantile estimation in partial functional linear regression model with dependent errors. Metrika. 2019, 82 6 633-656

AI Summary AI Mindmap
PDF

194

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/