PDF
Abstract
Let $({\mathcal {X}},d,\mu )$ be a doubling metric measure space in the sense of R. R. Coifman and G. Weiss, L a non-negative self-adjoint operator on $L^2({\mathcal {X}})$ satisfying the Davies–Gaffney estimate, and $X({\mathcal {X}})$ a ball quasi-Banach function space on ${\mathcal {X}}$ satisfying some extra mild assumptions. In this article, the authors introduce the Hardy type space $H_{X,\,L}({\mathcal {X}})$ by the Lusin area function associated with L and establish the atomic and the molecular characterizations of $H_{X,\,L}({\mathcal {X}}).$ As an application of these characterizations of $H_{X,\,L}({\mathcal {X}})$, the authors obtain the boundedness of spectral multiplies on $H_{X,\,L}({\mathcal {X}})$. Moreover, when L satisfies the Gaussian upper bound estimate, the authors further characterize $H_{X,\,L}({\mathcal {X}})$ in terms of the Littlewood–Paley functions $g_L$ and $g_{\lambda ,\,L}^*$ and establish the boundedness estimate of Schrödinger groups on $H_{X,\,L}({\mathcal {X}})$. Specific spaces $X({\mathcal {X}})$ to which these results can be applied include Lebesgue spaces, Orlicz spaces, weighted Lebesgue spaces, and variable Lebesgue spaces. This shows that the results obtained in the article have extensive generality.
Keywords
Hardy space
/
Ball quasi-Banach function space
/
Non-negative self-adjoint operator
/
Atom
/
Molecule
/
Schrölder group
/
Spectral multiplier
/
Littlewood–Paley function
Cite this article
Download citation ▾
Xiaosheng Lin, Dachun Yang, Sibei Yang, Wen Yuan.
Hardy Spaces Associated with Non-negative Self-adjoint Operators and Ball Quasi-Banach Function Spaces on Doubling Metric Measure Spaces and Their Applications.
Communications in Mathematics and Statistics 1-53 DOI:10.1007/s40304-023-00376-0
| [1] |
Amenta, A.: Tent spaces over metric measure spaces under doubling and related assumptions. In: Operator Theory in Harmonic and Non-commutative Analysis: 23rd International Workshop in Operator Theory and its Applications, vol. 240, pp. 1–29. Birkhäuser/Springer, Cham (2014)
|
| [2] |
Auscher, P., Duong, X.T., McIntosh, A.: Boundedness of Banach space valued singular integral operators and Hardy spaces, Unpublished manuscript (2005)
|
| [3] |
Auscher P, Hytönen T. Orthonormal bases of regular wavelets in spaces of homogeneous type. Appl. Comput. Harmon. Anal.. 2013, 34 266-296
|
| [4] |
Bennett C, Sharpley R. Interpolation of Operators, Pure and Applied Mathematics. 1988 Boston: Academic Press Inc.
|
| [5] |
Bui TA. Weighted Hardy spaces associated to discrete Laplacians on graphs and applications. Potential Anal.. 2014, 41 817-848
|
| [6] |
Bui TA, Cao J, Ky LD, Yang D, Yang S. Musielak–Orlicz–Hardy spaces associated with operators satisfying reinforced off-diagonal estimates. Anal. Geom. Metr. Sp.. 2013, 1 69-129
|
| [7] |
Bui TA, Cao J, Ky LD, Yang D, Yang S. Weighted Hardy spaces associated with operators satisfying reinforced off-diagonal estimates. Taiwan. J. Math.. 2013, 17 1127-1166
|
| [8] |
Bui TA, D’Ancona P, Duong XT, Müller D. On the flows associated to selfadjoint operators on metric measure spaces. Math. Ann.. 2019, 375 1393-1426
|
| [9] |
Bui TA, D’Ancona P, Nicola F. Sharp $L^p$ estimates for Schrödinger groups on spaces of homogeneous type. Rev. Mat. Iberoam.. 2020, 36 455-484
|
| [10] |
Bui TA, Li J. Orlicz–Hardy spaces associated to operators satisfying bounded $H^\infty $ functional calculus and Davies–Gaffney estimates. J. Math. Anal. Appl.. 2011, 373 485-501
|
| [11] |
Bui TA, Ly FK. Sharp estimates for Schrödinger groups on Hardy spaces for $0<p\le 1$. J. Fourier Anal. Appl.. 2022, 28 70
|
| [12] |
Calderón A-P. Cauchy integrals on Lipschitz curves and related operators. Proc. Nat. Acad. Sci. U.S.A.. 1977, 74 1324-1327
|
| [13] |
Calderón A-P, Calderón CP, Fabes E, Jodeit M, Rivière NM. Applications of the Cauchy integral on Lipschitz curves. Bull. Am. Math. Soc.. 1978, 84 287-290
|
| [14] |
Chen P, Duong XT, Li J, Yan L. Sharp endpoint $L^p$ estimates for Schrödinger groups. Math. Ann.. 2020, 378 667-702
|
| [15] |
Chen P, Duong XT, Li J, Yan L. Sharp endpoint estimates for Schrödinger groups on Hardy spaces. J. Differ. Equ.. 2023, 371 660-690
|
| [16] |
Coifman RR, Meyer Y, Stein EM. Some new function spaces and their applications to harmonic analysis. J. Funct. Anal.. 1985, 62 304-335
|
| [17] |
Coifman RR, Weiss G. Analyse Harmonique Non-commutative sur Certains Espaces Homogènes. (French) Étude de Certaines Intégrales Singulières. 1971 Berlin-New York: Springer-Verlag
|
| [18] |
Coifman RR, Weiss G. Extensions of Hardy spaces and their use in analysis. Bull. Am. Math. Soc.. 1977, 83 569-645
|
| [19] |
Coulhon T, Sikora A. Gaussian heat kernel upper bounds via the Phragmen–Lindelof theorem. Proc. Lond. Math. Soc. (3). 2008, 96 507-544
|
| [20] |
Dai F, Grafakos L, Pan Z, Yang D, Yuan W, Zhang Y. The Bourgain–Brezis–Mironescu formula on ball Banach function spaces. Math. Ann.. 2023
|
| [21] |
Dai F, Lin X, Yang D, Yuan W, Zhang Y. Brezis–Van Schaftingen–Yung formulae in ball Banach function spaces with applications to fractional Sobolev and Gagliardo–Nirenberg inequalities. Calc. Var. Partial Differ. Equ.. 2023, 62 56
|
| [22] |
Davies EB. Heat kernel bounds, conservation of probability and the Feller property. J. Anal. Math.. 1992, 58 99-119
|
| [23] |
del Campo R, Fernández A, Mayoral F, Naranjo F. Orlicz spaces associated to a quasi-Banach function space: applications to vector measures and interpolation. Collect. Math.. 2021, 72 481-499
|
| [24] |
Duong XT, Yan L. Duality of Hardy and BMO spaces associated with operators with heat kernel bounds. J. Am. Math. Soc.. 2005, 18 943-973
|
| [25] |
Duong XT, Yan L. New function spaces of BMO type, the John–Nirenberg inequality, interpolation, and applications. Commun. Pure Appl. Math.. 2005, 58 1375-1420
|
| [26] |
Duong XT, Yan L. Spectral multipliers for Hardy spaces associated to non-negative self-adjoint operators satisfying Davies–Gaffney estimates. J. Math. Soc. Jpn.. 2011, 63 295-319
|
| [27] |
Fefferman C, Stein EM. $H^p$ spaces of several variables. Acta Math.. 1972, 129 137-193
|
| [28] |
Fu X, Ma T, Yang D. Real-variable characterizations of Musielak–Orlicz Hardy spaces on spaces of homogeneous type. Ann. Acad. Sci. Fenn. Math.. 2020, 45 343-410
|
| [29] |
Georgiadis AG, Kerkyacharian G, Kyriazis G, Petrushev P. Homogeneous Besov and Triebel–Lizorkin spaces associated to non-negative self-adjoint operators. J. Math. Anal. Appl.. 2017, 449 1382-1412
|
| [30] |
Georgiadis AG, Kerkyacharian G, Kyriazis G, Petrushev P. Atomic and molecular decomposition of homogeneous spaces of distributions associated to non-negative self-adjoint operators. J. Fourier Anal. Appl.. 2019, 25 3259-3309
|
| [31] |
Georgiadis AG, Kyriazis G. Embeddings between Triebel–Lizorkin spaces on metric spaces associated with operators. Anal. Geom. Metr. Sp.. 2020, 8 418-429
|
| [32] |
Georgiadis AG, Kyriazis G. Duals of Besov and Triebel–Lizorkin spaces associated with operators. Constr. Approx.. 2023, 57 547-577
|
| [33] |
Georgiadis AG, Nielsen M. Pseudodifferential operators on spaces of distributions associated with non-negative self-adjoint operators. J. Fourier Anal. Appl.. 2017, 23 344-378
|
| [34] |
Georgiadis AG, Nielsen M. Spectral multipliers on spaces of distributions associated with non-negative self-adjoint operators. J. Approx. Theory. 2018, 234 1-19
|
| [35] |
Gong R, Yan L. Littlewood–Paley and spectral multipliers on weighted $L^p$ spaces. J. Geom. Anal.. 2014, 24 873-900
|
| [36] |
Grafakos L, Liu L, Yang D. Vector-valued singular integrals and maximal functions on spaces of homogeneous type. Math. Scand.. 2009, 104 296-310
|
| [37] |
Heinonen J. Lectures on Analysis on Metric Spaces. 2001 New York: Universitext, Springer-Verlag
|
| [38] |
Hofmann S , Lu G, Mitrea D, Mitrea M, Yan L. Hardy spaces associated to non-negative self-adjoint operators satisfying Davies–Gaffney estimates. Mem. Am. Math. Soc.. 2011, 214 1007 vi+78
|
| [39] |
Hofmann S, Mayboroda S, McIntosh A. Second order elliptic operators with complex bounded measurable coefficients in $L^p$, Sobolev and Hardy spaces. Ann. Sci. École Norm. Sup. (4). 2011, 44 723-800
|
| [40] |
Hu G. Littlewood–Paley characterization of weighted Hardy spaces associated with operators. J. Aust. Math. Soc.. 2017, 103 250-267
|
| [41] |
Jiang R, Yang D. New Orlicz–Hardy spaces associated with divergence form elliptic operators. J. Funct. Anal.. 2010, 258 1167-1224
|
| [42] |
Jiang R, Yang D. Orlicz–Hardy spaces associated with operators satisfying Davies–Gaffney estimates. Commun. Contemp. Math.. 2011, 13 331-373
|
| [43] |
Kenig CE. Weighted $H^p$ spaces on Lipschitz domains. Am. J. Math.. 1980, 102 129-163
|
| [44] |
Lindenstrauss J, Tzafriri L. Classical Banach Spaces. II: Function Spaces, Ergebnisse der Mathematik und ihrer Grenzgebiete. 1979 Berlin-New York: Springer-Verlag
|
| [45] |
Liu J, Yang D, Zhang M. Sharp bilinear decomposition for products of both anisotropic Hardy spaces and their dual spaces with its applications to endpoint boundedness of commutators. Sci. China Math.. 2023
|
| [46] |
Liu S, Song L. An atomic decomposition of weighted Hardy spaces associated to self-adjoint operators. J. Funct. Anal.. 2013, 265 2709-2723
|
| [47] |
McIntosh, A.: Operators which have an $H_\infty $ functional calculus. In: Miniconference on Operator Theory and Partial Differential Equations (North Ryde, 1986) Proc. Centre Math. Anal. Austral. Nat. Univ., vol. 14, pp. 210–231. Australian National University, Canberra (1986)
|
| [48] |
Nakai E, Yabuta K. Pointwise multipliers for functions of weighted bounded mean oscillation on spaces of homogeneous type. Math. Jpn.. 1997, 46 15-28
|
| [49] |
Pan, Z., Yang, D., Yuan, W., Zhang, Y.: Gagliardo representation of norms of ball quasi-Banach function spaces. J. Funct. Anal. 286, 110205 (2024)
|
| [50] |
Rao MM, Ren ZD. Theory of Orlicz Spaces, Monographs and Textbooks in Pure and Applied Mathematics. 1991 New York: Marcel Dekker Inc.
|
| [51] |
Russ, E.: The atomic decomposition for tent spaces on spaces of homogeneous type. In: CMA/AMSI Research Symposium “Asymptotic Geometric Analysis, Harmonic Analysis, and Related Topics, Proc. Centre Math. Appl. Austral. Nat. Univ., vol. 42, pp. 125–135. Australian National University, Canberra (2007)
|
| [52] |
Sawano Y, Ho K-P, Yang D, Yang S. Hardy spaces for ball quasi-Banach function spaces. Diss. Math.. 2017, 525 1-102
|
| [53] |
Song L, Yan L. Riesz transforms associated to Schrödinger operators on weighted Hardy spaces. J. Funct. Anal.. 2010, 259 1466-1490
|
| [54] |
Stein EM , Weiss G. On the theory of harmonic functions of several variables. I. The theory of $H^p$-spaces. Acta Math.. 1960, 103 25-62
|
| [55] |
Sun J, Yang D, Yuan W. Molecular characterization of weak Hardy spaces associated with ball quasi-Banach function spaces on spaces of homogeneous type with its applications to Littlewood–Paley function characterizations. Forum Math.. 2022, 34 1539-1589
|
| [56] |
Sun J , Yang D, Yuan W. Weak Hardy spaces associated with ball quasi-Banach function spaces on spaces of homogeneous type: decompositions, real interpolation, and Calderón–Zygmund operators. J. Geom. Anal.. 2022, 32 191
|
| [57] |
Wang F, Yang D, Yang S. Applications of Hardy spaces associated with ball quasi-Banach function spaces. Results Math.. 2020, 75 26
|
| [58] |
Wang F, Yang D, Yuan W. Riesz transform characterization of Hardy spaces associated with ball quasi-Banach function spaces. J. Fourier Anal. Appl.. 2023, 29 56
|
| [59] |
Wang S, Yang D, Yuan W, Zhang Y. Weak Hardy-type spaces associated with ball quasi-Banach function spaces II: Littlewood–Paley characterizations and real interpolation. J. Geom. Anal.. 2021, 31 631-696
|
| [60] |
Yan L. Classes of Hardy spaces associated with operators, duality theorem and applications. Trans. Am. Math. Soc.. 2008, 360 4383-4408
|
| [61] |
Yan X, He Z, Yang D, Yuan W. Hardy spaces associated with ball quasi-Banach function spaces on spaces of homogeneous type: characterizations of maximal functions, decompositions, and dual spaces. Math. Nachr.. 2023, 296 3056-3116
|
| [62] |
Yan X, He Z, Yang D, Yuan W. Hardy spaces associated with ball quasi-Banach function spaces on spaces of homogeneous type: Littlewood–Paley characterizations with applications to boundedness of Calderón–Zygmund operators. Acta Math. Sin. (Engl. Ser.). 2022, 38 1133-1184
|
| [63] |
Yang D, Yang S. Musielak–Orlicz–Hardy spaces associated with operators and their applications. J. Geom. Anal.. 2014, 24 495-570
|
| [64] |
Yang D, Zhang J. Variable Hardy spaces associated with operators satisfying Davies–Gaffney estimates on metric measure spaces of homogeneous type. Ann. Acad. Sci. Fenn. Math.. 2018, 43 47-87
|
| [65] |
Yang D, Zhang J, Zhuo C. Variable Hardy spaces associated with operators satisfying Davies–Gaffney estimates. Proc. Edinb. Math. Soc. (2). 2018, 61 759-810
|
| [66] |
Yang D, Zhuo C. Molecular characterizations and dualities of variable exponent Hardy spaces associated with operators. Ann. Acad. Sci. Fenn. Math.. 2016, 41 357-398
|
| [67] |
Zhang Y, Yang D, Yuan W, Wang S. Weak Hardy-type spaces associated with ball quasi-Banach function spaces I: decompositions with applications to boundedness of Calderón–Zygmund operators. Sci. China Math.. 2021, 64 2007-2064
|
| [68] |
Zhu, C., Yang, D., Yuan, W.: Generalized Brezis–Seeger–Van Schaftingen–Yung formulae and their applications in ball Banach Sobolev spaces. Calc. Var. Partial Differential Equations 62, 234 (2023)
|
| [69] |
Zhu, C., Yang, D., Yuan, W.: Extension theorem and Bourgain–Brezis–Mironescu type characterization of ball Banach Sobolev spaces on domains, Submitted for publication
|
| [70] |
Zhu, C., Yang, D., Yuan, W.: Brezis–Seeger–Van Schaftingen–Yung-type characterization of homogeneous ball Banach Sobolev spaces and its applications. Commun. Contemp. Math. (2023). https://doi.org/10.1142/S0219199723500414
|
| [71] |
Zhuo C, Sawano Y, Yang D. Hardy spaces with variable exponents on RD-spaces and applications. Diss. Math.. 2016, 520 74
|
Funding
National Key Research and Development Program of China(2020YFA0712900)
National Natural Science Foundation of China(11971058, 12071197, 12122102 and 12071431)
Fundamental Research Funds for the Central Universities(lzujbky-2021-ey18)
Innovative Groups of Basic Research in Gansu Province(22JR5RA391)
Key Project of Gansu Provincial National Science Foundation(23JRRA1022)