$L_p$ dual Minkowski problem,$L_p$ dual curvature,Minkowski-type inequlity,Uniqueness,Continuity" /> $L_p$ dual Minkowski problem" /> $L_p$ dual curvature" /> $L_p$ dual Minkowski problem,$L_p$ dual curvature,Minkowski-type inequlity,Uniqueness,Continuity" />

Uniqueness and Continuity of the Solution to $L_p$ Dual Minkowski Problem

Hejun Wang , Jiazu Zhou

Communications in Mathematics and Statistics ›› : 1 -36.

PDF
Communications in Mathematics and Statistics ›› : 1 -36. DOI: 10.1007/s40304-023-00374-2
Article

Uniqueness and Continuity of the Solution to $L_p$ Dual Minkowski Problem

Author information +
History +
PDF

Abstract

Lutwak et al. (Adv Math 329:85–132, 2018) introduced the $L_p$ dual curvature measure that unifies several other geometric measures in dual Brunn–Minkowski theory and Brunn–Minkowski theory. Motivated by works in Lutwak et al. (Adv Math 329:85–132, 2018), we consider the uniqueness and continuity of the solution to the $L_p$ dual Minkowski problem. To extend the important work (Theorem A) of LYZ to the case for general convex bodies, we establish some new Minkowski-type inequalities which are closely related to the optimization problem associated with the $L_p$ dual Minkowski problem. When $q< p$, the uniqueness of the solution to the $L_p$ dual Minkowski problem for general convex bodies is obtained. Moreover, we obtain the continuity of the solution to the $L_p$ dual Minkowski problem for convex bodies.

Keywords

$L_p$ dual Minkowski problem')">$L_p$ dual Minkowski problem / $L_p$ dual curvature')">$L_p$ dual curvature / Minkowski-type inequlity / Uniqueness / Continuity

Cite this article

Download citation ▾
Hejun Wang, Jiazu Zhou. Uniqueness and Continuity of the Solution to $L_p$ Dual Minkowski Problem. Communications in Mathematics and Statistics 1-36 DOI:10.1007/s40304-023-00374-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Aleksandrov AD. On the theory of mixed volumes. III. Extension of two theorems of Minkowski on convex polyhedra to arbitrary convex bodies. Mat. Sb.(NS). 1938, 3 27-46

[2]

Aleksandrov AD. Existence and uniqueness of a convex surface with a given integral curvature. C. R. (Doklady) Acad. Sci. URSS (N.S.). 1942, 35 131-134

[3]

Barthe F, Guédon O, Mendelson S, Naor A. A probabilistic approach to the geometry of the $l^n_p$-ball. Ann. Probab.. 2005, 33 480-513

[4]

Böröczky KJ, Fodor F. On the $L_p$ dual Minkowski problem for $p>1$ and $q>0$. J. Differ. Equ.. 2019, 266 7980-8033

[5]

Böröczky KJ, Hegedűs P, Zhu G. On the discrete logarithmic Minkowski problem. Int. Math. Res. Not.. 2016, 6 1807-1838

[6]

Böröczky KJ, Henk M. Cone-volume measure of general centered convex bodies. Adv. Math.. 2016, 286 703-721

[7]

Böröczky KJ, Henk M, Pollehn H. Subspace concentration of dual curvature measures of symmetric convex bodies. J. Differ. Geom.. 2018, 109 411-429

[8]

Böröczky KJ, Lutwak E, Yang D, Zhang G. The log-Brunn–Minkowski inequality. Adv. Math.. 2012, 231 197-1997

[9]

Böröczky KJ, Lutwak E, Yang D, Zhang G. The logarithmic Minkowski problem. J. Am. Math. Soc.. 2013, 26 831-852

[10]

Chen C, Huang Y, Zhao Y. Smooth solutions to the $L_p$ dual Minkowski problem. Math. Ann.. 2019, 373 953-976

[11]

Chen S, Li Q, Zhu G. On the $L_p$ Monge-Ampère equation. J. Differ. Equ.. 2017, 263 4997-5011

[12]

Chen W. $L_p$ Minkowski problem with not necessarily positive data. Adv. Math.. 2006, 201 77-89

[13]

Cianchi A, Lutwak E, Yang D, Zhang G. Affine Moser–Trudinger and Morrey–Sobolev inequalities. Calc. Var. Partial Differ. Equ.. 2009, 36 419-436

[14]

Chou KS, Wang XJ. The $L_p$-Minkowski problem and the Minkowski problem in centroaffine geometry. Adv. Math.. 2006, 205 33-83

[15]

Colesanti A, Fragalà I. The first variation of the total mass of log-concave functions and related inequalities. Adv. Math.. 2013, 244 708-749

[16]

Cordero-Erausquin D, Klartag B. Moment measure. J. Funct. Anal.. 2015, 268 3834-3866

[17]

Fang N, Zhou J. LYZ ellipsoid and Petty projection body for log-concave functions. Adv. Math.. 2018, 340 914-959

[18]

Fenchel W, Jessen B. Mengenfunktionen und konvexe Körper, Danske Vid. Selskab. Mat.-fys. Medd.. 1938, 16 1-31

[19]

Gardner RJ, Hug D, Weil W, Xing S, Ye D. General volumes in the Orlicz–Brunn–Minkowski theory and a related Minkowski problem I. Calc. Var. Partial Differ. Equ.. 2019, 58 1 12

[20]

Gardner RJ, Hug D, Xing S, Ye D. General volumes in the Orlicz–Brunn–Minkowski theory and a related Minkowski problem II. Calc. Var. Partial Differ. Equ.. 2020, 59 1 15

[21]

Haberl C, Lutwak E, Yang D, Zhang G. The even Orlicz Minkowski problem. Adv. Math.. 2010, 224 2485-2510

[22]

Haberl C, Schuster FE. General $L_p$ affine isoperimetric inequalities. J. Differ. Geom.. 2009, 83 1-26

[23]

Haberl C, Schuster FE. Asymmetric affine $L_p$ Sobolev inequalities. J. Funct. Anal.. 2009, 257 641-658

[24]

Haberl C, Schuster FE, Xiao J. An asymmetric affine Pólya-Szegö principle. Math. Ann.. 2012, 352 517-542

[25]

Huang Q, He B. On the Orlicz Minkowski problem for polytopes. Discrete Comput. Geom.. 2012, 48 281-297

[26]

Huang Y, Liu J, Xu L. On the uniqueness of $L_p$-Minkowski problems: the constant $p$-curvature case in ${\mathbb{R} }^3$. Adv. Math.. 2015, 281 906-927

[27]

Huang Y, Lutwak E, Yang D, Zhang G. Geometric measures in the dual Brunn–Minkowki theory and their associated Minkowski problems. Acta Math.. 2016, 216 325-388

[28]

Huang Y, Lutwak E, Yang D, Zhang G. The $L_p$ Aleksandrov problem for $L_p$ integral curvature. J. Differ. Geom.. 2018, 110 1-29

[29]

Huang Y, Zhao Y. On the $L_p$ dual Minkowski problem. Adv. Math.. 2018, 332 57-84

[30]

Hug D, Lutwak E, Yang D, Zhang G. On the $L_p$ Minkowski problem for polytopes. Discrete Comput. Geom.. 2005, 33 699-715

[31]

Jian H, Lu J, Zhu G. Mirror symmetric solutions to the centro-affine Minkowski problem. Calc. Var. Partial Differ. Equ.. 2016, 55 2 41

[32]

Li Q-R, Liu J, Lu J. Nonuniqueness of solutions to the $L_p$ dual Minkowski problem. Int. Math. Res. Not. IMRN. 2022, 2022 9114-9150

[33]

Lv S. A functional Busemann intersection inequality. J. Geom. Anal.. 2021, 31 6274-6291

[34]

Lu J, Wang XJ. Rotationally symmetric solutions to the $L_p$-Minkowski problem. J. Differ. Equ.. 2013, 254 983-1005

[35]

Ludwig M, Xiao J, Zhang G. Sharp convex Lorentz–Sobolev inequalities. Math. Ann.. 2011, 350 169-197

[36]

Lutwak E. Dual mixed volumes. Pacific J. Math.. 1975, 58 531-538

[37]

Lutwak E. The Brunn–Minkowski–Firey theory. I. Mixed volumes and the Minkowski problem. J. Differ. Geom.. 1993, 38 131-150

[38]

Lutwak E, Oliker V. On the regularity of solutions to a generalization of the Minkowski problem. J. Differ. Geom.. 1995, 41 227-246

[39]

Lutwak E, Yang D, Zhang G. Sharp affine $L_p$ Sobolev inequalities. J. Differ. Geom.. 2002, 62 17-38

[40]

Lutwak E, Yang D, Zhang G. On the $L_p$-Minkowski problem. Trans. Am. Math. Soc.. 2004, 356 4359-4370

[41]

Lutwak E, Yang D, Zhang G. $L_p$ dual curvature measures. Adv. Math.. 2018, 329 85-132

[42]

Minkowski, H.: Allgemeine Lehrsätze über die konvexen Polyeder, Nachr. Ges. Wiess. Göttingen, 189–219 (German) (1897)

[43]

Minkowski H. Volumen und Oberfläche. Math. Ann.. 1903, 57 447-495

[44]

Schneider R. Convex Bodies: the Brunn–Minkowski Theory, Encyclopedia of Mathematics and its Applications. 2014 Cambridge: Cambridge University Press

[45]

Stancu A. The discrete planar $L_0$-Minkowski problem. Adv. Math.. 2002, 167 160-174

[46]

Stancu A. On the number of solutions to the discrete two-dimensional $L_0$-Minkowski problem. Adv. Math.. 2003, 180 290-323

[47]

Sun Y, Long Y. The planar Orlicz Minkowski problem in the $L^1$-sense. Adv. Math.. 2015, 281 1364-1383

[48]

Wang H. Continuity of the solution to the $L_p$ Minkowski problem in Gaussian probability space. Acta Math. Sin. (Engl. Ser.),. 2022, 38 2253-2264

[49]

Wang H, Fang N, Zhou J. Continuity of the solution to the dual Minkowski problem for negative indices. Proc. Am. Math. Soc.. 2019, 147 1299-1312

[50]

Wang H, Fang N, Zhou J. Continuity of the solution to the even logarithmic Minkowski problem in the plane. Sci. China Math.. 2019, 62 1419-1428

[51]

Wang H, Lv Y. Continuity of the solution to the even $L_p$ Minkowski problem for $0<p<1$ in the plane. Intern. J. Math.. 2020, 31 12 2050101

[52]

Wang T. The affine Sobolev–Zhang inequality on $BV({\mathbb{R} }^n)$. Adv. Math.. 2012, 230 2457-2473

[53]

Wu Y, Xi D, Leng G. On the discrete Orlicz Minkowski problem. Trans. Am. Math. Soc.. 2019, 371 1795-1814

[54]

Xi D, Zhang Z. The $L_p$ Brunn–Minkowski inequality for dual quermassintegrals. Proc. Am. Math. Soc.. 2022, 150 3075-3086

[55]

Xing S, Ye D. On the general dual Orlicz–Minkowski problem. Indiana Univ. Math. J.. 2020, 69 621-655

[56]

Zhang G. The affine Sobolev inequality. J. Differ. Geom.. 1999, 53 183-202

[57]

Zhang Z. The Brunn–Minkowski inequalities of entropy of convex body. Pure Math.. 2021, 11 7 1361-1368 in Chinese)

[58]

Zhao Y. The dual Minkowski problem for negative indices. Calc. Var. Partial Differ. Equ.. 2017, 56 2 18

[59]

Zhao Y. Existence of solution to the even dual Minkowski problem. J. Differ. Geom.. 2018, 110 543-572

[60]

Zhao Y. The $L_p$ Aleksandrov problem for origin-symmetric polytopes. Proc. Am. Math. Soc.. 2019, 147 4477-4492

[61]

Zhu B, Xing S, Ye D. The dual Orlicz–Minkowski problem. J. Geom. Anal.. 2018, 28 3829-3855

[62]

Zhu B, Zhou J, Xu W. Dual Orlicz–Brunn–Minkowski theory. Adv. Math.. 2014, 264 700-725

[63]

Zhu G. The logarithmic Minkowski problem for polytopes. Adv. Math.. 2014, 262 909-931

[64]

Zhu G. The $L_p$ Minkowski problem for polytopes for $0<p<1$. J. Funct. Anal.. 2015, 269 1070-1094

[65]

Zhu G. The centro-affine Minkowski problem for polytopes. J. Differ. Geom.. 2015, 101 159-174

[66]

Zhu G. Continuity of the solution to the $L_p$ Minkowski problem. Proc. Am. Math. Soc.. 2017, 145 379-386

[67]

Zhu G. The $L_p$ Minkowski problem for polytopes for $p<0$. Indiana Univ. Math. J.. 2017, 66 1333-1350

AI Summary AI Mindmap
PDF

60

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/