$\sigma $-algebra,Directional entropy" /> $\sigma $-algebra" /> $\sigma $-algebra,Directional entropy" />

Directional Entropy and Pinsker $\sigma $-Algebra for $\mathbb {Z}^{2}$-Actions

Runju Wei , Leiye Xu , Xiaomin Zhou

Communications in Mathematics and Statistics ›› : 1 -18.

PDF
Communications in Mathematics and Statistics ›› : 1 -18. DOI: 10.1007/s40304-023-00369-z
Article

Directional Entropy and Pinsker $\sigma $-Algebra for $\mathbb {Z}^{2}$-Actions

Author information +
History +
PDF

Abstract

In this paper, we study the directional entropy along irrational directions in $\mathbb {R}^2$ and present the structure of directional Pinsker $\sigma $-algebra of $\mathbb {Z}^2$-MPSs.

Keywords

$\sigma $-algebra')">Directional Pinsker $\sigma $-algebra / Directional entropy

Cite this article

Download citation ▾
Runju Wei, Leiye Xu, Xiaomin Zhou. Directional Entropy and Pinsker $\sigma $-Algebra for $\mathbb {Z}^{2}$-Actions. Communications in Mathematics and Statistics 1-18 DOI:10.1007/s40304-023-00369-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Adler RL, Konheim AG, McAndrew MH. Topological entropy. Trans. Am. Math. Soc.. 1965, 114 309-319

[2]

Broderick R, Cyr V, Kra B. Complexity and directional entropy in two dimensions. Israel J. Math.. 2016, 215 135-162

[3]

Boyle M, Lind D. Expansive subdynamics. Trans. Am. Math. Soc.. 1997, 349 55-102

[4]

Dooley A, Zhang G. Local entropy theory of a random dynamical system. Mem. Am. Math. Soc.. 2015, 233 1099 vi+106

[5]

Einsiedler M, Lind D. Algebraic $\mathbb{Z} ^d$-actions on entropy rank one. Trans. Am. Math. Soc.. 2004, 356 1831-1977

[6]

Einsiedler M, Ward T. Ergodic Theory with a View Towards Number Theory. 2011 London: Springer. xviii+481

[7]

Huang W, Ye X. A local variational relation and applications. Israel J. Math.. 2006, 151 237-279

[8]

Huang W, Ye X, Zhang G. Relative entropy tuples, relative U.P.E. and C.P.E. extensions. Israel J. Math.. 2007, 158 249-283

[9]

Huang W, Ye X, Zhang G. Local entropy theory for a countable discrete amenable group action. J. Funct. Anal.. 2011, 261 4 1028-1082

[10]

Glasner, E., Weiss, B.: Topological entropy of extensions, Ergodic Theory and its connections with harmonic nnalysis (Alexandria, 1993), pp. 299–307, London Math. Soc. Lecture Note Ser., 205. Cambridge Univ. Press, Cambridge (1995)

[11]

Kolmogorov AN. A new metric invariant of transient dynamical systems and automorphisms in Lebesgue spaces. (Russian) Dokl. Akad. Nauk SSSR (N.S.). 1958, 119 861-864

[12]

Kolmogorov AN. Entropy per unit time as a metric invariant of automorphisms. (Russian) Dokl. Akad. Nauk SSSR. 1959, 124 754-755

[13]

Kaminski B, Park K. On the directional entropy for $\mathbb{Z} ^2$-actions on a Lebesgue space. Studia Math.. 1999, 133 39-51

[14]

Lemańczyk M, Siemaszko A. A note on the existence of a largest topological factor with zero entropy. Proc. Am. Math. Soc.. 2001, 129 2 475-482

[15]

Milnor J. On the entropy geometry of cellular automata. Complex Syst.. 1988, 2 3 357-385

[16]

Park K. Continuity of directional entropy for a class of $\mathbb{Z} ^2$-actions. J. Korean Math. Soc.. 1995, 32 573-582

[17]

Park K. On directional entropy functions. Israel J. Math.. 1999, 113 243-267

[18]

Park K, Lee U. Entropy pairs of $\mathbb{Z} ^2$ and their directional properties. Stud. Math.. 2004, 3 255-274

[19]

Park K, Siemaszko A. Relative topological Pinsker factors and entropy pairs. Monatsh. Math.. 2001, 134 1 67-79

[20]

Pinsker MS. Dynamical systems with completely positive or zero entropy. Dokl. Akad. Nauk SSSR. 1960, 133 1025-1026

[21]

Robinson E, Sahin A. Rank-one $\mathbb{Z} ^d$-actions and directional entropy. Ergodic Theory Dyn. Syst.. 2011, 31 285-299

[22]

Sinai, Ya.G.: An answer to a question by J. Milnor. Comment. Math. Helv. 60(2), 173–178 (1985)

[23]

Sinai, Ya.G.: On the concept of entropy for a dynamic system. (Russian) Dokl. Akad. Nauk SSSR 124, 768–771 (1959)

[24]

Wei, R., Xu, L., Zheng, L., Zhou, X.: Bounded directional complexity and rigidity for $\mathbb{Z}^{q}$ -actions. In preparation

[25]

Zhu Y. A note on two types of Lyapunov exponents and entropies for $\mathbb{Z} ^k$-actions. J. Math. Anal. Appl.. 2018, 461 38-50

[26]

Zhang J, Zhang W. Directional entropy of $\mathbb{Z}_+^k$-actions. Stoch. Dyn.. 2016, 16 1 1650004, 22

Funding

National Natural Science Foundation of China(12031019)

Fundamental Research Funds for the Central Universities(2020kfyXJJS036)

AI Summary AI Mindmap
PDF

81

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/