Harrison Center and Products of Sums of Powers
Hua-Lin Huang , Lili Liao , Huajun Lu , Yu Ye , Chi Zhang
Communications in Mathematics and Statistics ›› : 1 -8.
Harrison Center and Products of Sums of Powers
This paper is mainly concerned with identities like
| [1] |
Becker, E.: The real holomorphy ring and sums of $2^n$-th powers, In: Géometrie Algébrique Réelle et Formes Quadratiques, (J.-L. Colliot-Thélène, M. Coste, L. Mahé and M.-F. Roy, eds.), Lecture Notes in Math. 959 (1981), Springer, Berlin, 139–181 |
| [2] |
Carlson, J., Griffiths, P.: Infinitesimal variations of Hodge structure and the global Torelli problem, In: Beauville, A. (Ed.) Journées de Géometrie Algébrique d’Angers, pp. 51–76. Sijthoff and Noordhoff (1980) |
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
Hurwitz, A.: Über die Komposition der quadratischen Formen von beliebig vielen Variablen, Nahr. Ges. Wiss. Göttingen (1898) 309–316 |
| [11] |
|
| [12] |
Kleppe, J.: Additive splittings of homogeneous polynomials, Ph.D. thesis, U. Oslo, 2005, arXiv:1307.3532 |
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
/
| 〈 |
|
〉 |