PDF
Abstract
We study the solutions of elliptic Yang–Mills equation \documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$-\partial _r^2 u-\frac{(d-3)}{r} \partial _r u+\frac{(d-2)}{r^2}u(1-u)(2-u)=0,$$\end{document}
and we give a description of their asymptotic behaviors in dimensions \documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$d\ge 10$$\end{document}
. These solutions serve as the ground state solutions for super-critical Yang–Mills heat flow equation; thus, this result provides the background for potential blow-up research.
Keywords
Yang-Mills fields
/
Asymptotic behavior
/
SO(d)-equivariant
/
34B15
/
34E05
Cite this article
Download citation ▾
Yezhou Yi.
On Asymptotic Behavior of Elliptic SO(d)-Equivariant Yang–Mills Fields.
Communications in Mathematics and Statistics, 2025, 13(6): 1351-1367 DOI:10.1007/s40304-023-00361-7
| [1] |
Biernat P. Non-self-similar blow-up in the heat flow for harmonic maps in higher dimensions. Nonlinearity, 2014, 28(1): 167-185
|
| [2] |
Cazenave T, Shatah J, Shadi Tahvildar-Zadeh A. Harmonic maps of the hyperbolic space and development of singularities in wave maps and Yang–Mills fields. Ann. Inst. H. Poincaré Phys. Théor., 1998, 68(3): 315-349
|
| [3] |
Donninger R. Stable self-similar blowup in energy supercritical Yang–Mills theory. Math. Z., 2014, 278(3–4): 1005-1032
|
| [4] |
Donninger R, Schörkhuber B. Stable blowup for the supercritical Yang–Mills heat flow. J. Differ. Geom., 2019, 113(1): 55-94
|
| [5] |
Dumitrascu O. Equivariant solutions of the Yang–Mills equations. Stud. Cerc. Mat., 1982, 34(4): 329-333
|
| [6] |
Gastel A. Singularities of first kind in the harmonic map and Yang–Mills heat flows. Math. Z., 2002, 242(1): 47-62
|
| [7] |
Gastel A. Nonuniqueness for the Yang–Mills heat flow. J. Differ. Equ., 2003, 187(2): 391-411
|
| [8] |
Glogić, I.: Stable blowup for the supercritical hyperbolic Yang–Mills equations. Preprint arXiv:2104.01839
|
| [9] |
Glogić I, Schörkhuber B. Nonlinear stability of homothetically shrinking Yang–Mills solitons in the equivariant case. Commun. Partial Differ. Equ., 2020, 45(8): 887-912
|
| [10] |
Grotowski JF. Finite time blow-up for the Yang–Mills heat flow in higher dimensions. Math. Z., 2001, 237(2): 321-333
|
| [11] |
Li Y. Asymptotic behavior of positive solutions of equation Δu+K(x)up=0\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\Delta u+K(x)u^p=0$$\end{document} in Rn,\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$${\mathbb{R} }^n,$$\end{document}. J. Differ. Equ., 1992, 95(2): 304-330
|
| [12] |
Naito H. Finite time blowing-up for the Yang–Mills gradient flow in higher dimensions. Hokkaido Math. J., 1994, 23(3): 451-464
|
| [13] |
Weinkove B. Singularity formation in the Yang–Mills flow. Calc. Var. Partial. Differ. Equ., 2004, 19(2): 211-220
|
Funding
NSFC(No. 11771415)
RIGHTS & PERMISSIONS
School of Mathematical Sciences, University of Science and Technology of China and Springer-Verlag GmbH Germany, part of Springer Nature