On Asymptotic Behavior of Elliptic SO(d)-Equivariant Yang–Mills Fields

Yezhou Yi

Communications in Mathematics and Statistics ›› 2025, Vol. 13 ›› Issue (6) : 1351 -1367.

PDF
Communications in Mathematics and Statistics ›› 2025, Vol. 13 ›› Issue (6) :1351 -1367. DOI: 10.1007/s40304-023-00361-7
Article
research-article

On Asymptotic Behavior of Elliptic SO(d)-Equivariant Yang–Mills Fields

Author information +
History +
PDF

Abstract

We study the solutions of elliptic Yang–Mills equation

-r2u-(d-3)rru+(d-2)r2u(1-u)(2-u)=0,
and we give a description of their asymptotic behaviors in dimensions
d10
. These solutions serve as the ground state solutions for super-critical Yang–Mills heat flow equation; thus, this result provides the background for potential blow-up research.

Keywords

Yang-Mills fields / Asymptotic behavior / SO(d)-equivariant / 34B15 / 34E05

Cite this article

Download citation ▾
Yezhou Yi. On Asymptotic Behavior of Elliptic SO(d)-Equivariant Yang–Mills Fields. Communications in Mathematics and Statistics, 2025, 13(6): 1351-1367 DOI:10.1007/s40304-023-00361-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Biernat P. Non-self-similar blow-up in the heat flow for harmonic maps in higher dimensions. Nonlinearity, 2014, 28(1): 167-185

[2]

Cazenave T, Shatah J, Shadi Tahvildar-Zadeh A. Harmonic maps of the hyperbolic space and development of singularities in wave maps and Yang–Mills fields. Ann. Inst. H. Poincaré Phys. Théor., 1998, 68(3): 315-349

[3]

Donninger R. Stable self-similar blowup in energy supercritical Yang–Mills theory. Math. Z., 2014, 278(3–4): 1005-1032

[4]

Donninger R, Schörkhuber B. Stable blowup for the supercritical Yang–Mills heat flow. J. Differ. Geom., 2019, 113(1): 55-94

[5]

Dumitrascu O. Equivariant solutions of the Yang–Mills equations. Stud. Cerc. Mat., 1982, 34(4): 329-333

[6]

Gastel A. Singularities of first kind in the harmonic map and Yang–Mills heat flows. Math. Z., 2002, 242(1): 47-62

[7]

Gastel A. Nonuniqueness for the Yang–Mills heat flow. J. Differ. Equ., 2003, 187(2): 391-411

[8]

Glogić, I.: Stable blowup for the supercritical hyperbolic Yang–Mills equations. Preprint arXiv:2104.01839

[9]

Glogić I, Schörkhuber B. Nonlinear stability of homothetically shrinking Yang–Mills solitons in the equivariant case. Commun. Partial Differ. Equ., 2020, 45(8): 887-912

[10]

Grotowski JF. Finite time blow-up for the Yang–Mills heat flow in higher dimensions. Math. Z., 2001, 237(2): 321-333

[11]

Li Y. Asymptotic behavior of positive solutions of equation Δu+K(x)up=0\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\Delta u+K(x)u^p=0$$\end{document} in Rn,\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$${\mathbb{R} }^n,$$\end{document}. J. Differ. Equ., 1992, 95(2): 304-330

[12]

Naito H. Finite time blowing-up for the Yang–Mills gradient flow in higher dimensions. Hokkaido Math. J., 1994, 23(3): 451-464

[13]

Weinkove B. Singularity formation in the Yang–Mills flow. Calc. Var. Partial. Differ. Equ., 2004, 19(2): 211-220

Funding

NSFC(No. 11771415)

RIGHTS & PERMISSIONS

School of Mathematical Sciences, University of Science and Technology of China and Springer-Verlag GmbH Germany, part of Springer Nature

PDF

116

Accesses

0

Citation

Detail

Sections
Recommended

/