PDF
Abstract
Data with missing values are often obtained using multivariate statistical analyses. It is crucial to study how to estimate parameters and test hypotheses using such data. There exists a step monotone incomplete sample as a simple model of data, which includes such missing values. In this study, we derive the asymptotic distribution of the estimator for the correlation matrix and propose a hypothesis testing method for it in a three-step monotone incomplete sample. Further, we investigate the accuracy of our results by numerical simulation.
Keywords
Asymptotic distribution
/
Correlation matrix
/
Monotone incomplete sample
/
62E20
/
62F12
/
62H12
/
62H15
Cite this article
Download citation ▾
Shin-ichi Tsukada.
Asymptotic Distribution of the Correlation Matrix in a Monotone Incomplete Sample.
Communications in Mathematics and Statistics, 2025, 13(5): 1285-1311 DOI:10.1007/s40304-023-00358-2
| [1] |
AndersonT, OlkinI. Maximum likelihood estimation of the parameters of a multivariate normal distribution. Linear Algebra Appl., 1985, 70: 147-171.
|
| [2] |
AndersonTW. Maximum likelihood estimates for multivariate normal distribution when some observations are missing. J. Am. Stat. Assoc., 1957, 52: 200-203.
|
| [3] |
ChangWY, RichardsSP. Finite-sample inference with monotone incomplete multivariate normal data, I. J. Multivar. Anal., 2009, 100: 1883-1899.
|
| [4] |
ChangWY, RichardsSP. Finite-sample inference with monotone incomplete multivariate normal data, II. J. Multivar. Anal., 2010, 101: 603-620.
|
| [5] |
DempsterA, LairdNM, RubinDB. Maximum likelihood from incomplete data via the EM algorithm. J. R. Stat. Soc. Ser. B, 1977, 39: 1-38.
|
| [6] |
FujisawaH. A note on the maximum likelihood estimators for multivariate normal distribution with monotone data. Commun. Stat. Theory Methods, 1995, 24: 1377-1382.
|
| [7] |
GuptaAK, NagarDKMatrix Variate Distributions, 2000, Boca Raton. Chapman & Hall.
|
| [8] |
HaoJ, KrishnamoorthyK. Inferences on a normal covariance matrix and generalized variance with monotone missing data. J. Multivar. Anal., 2001, 78: 62-82.
|
| [9] |
HyodoM, ShutohN. Asymptotic power comparison of ${T^2}$-type test and likelihood ratio test for a mean vector based on two-step monotone missing data. Commun. Stat. Theory Methods, 2020, 49(17): 4270-4287.
|
| [10] |
HyodoM, ShutohN, SeoT, PavlenkoT. Estimation of the covariance matrix with two-step monotone missing data. Commun. Stat. Theory Methods, 2016, 45: 1910-1922.
|
| [11] |
JinadasaKG, TracyDS. Maximum likelihood estimation for multivariate normal distribution with monotone sample. Commun. Stat. Theory Methods, 1992, 21: 41-50.
|
| [12] |
KandaT, FujikoshiY. Some basic properties of the MLE’s for a multivariate normal distribution with monotone missing data. Am. J. Math. Manag. Sci., 1998, 18: 161-190
|
| [13] |
KawasakiT, SeoT. Bias correction for ${T^2}$ type statistic with two-step monotone missing data. Statistics, 2016, 50: 76-88.
|
| [14] |
KawasakiT, ShutohN, SeoT. On the asymptotic distribution of ${T^2}$-type statistic with two-step monotone missing data. J. Stat. Theory Pract., 2018, 12: 657-668.
|
| [15] |
LittleRJA, RubinDBStatistical Analysis with Missing Data, 20022Hoboken. Wiley-Interscience. .
|
| [16] |
RichardsDSP, YamadaT. The stein phenomenon for monotone incomplete multivariate normal data. J. Multivar. Anal., 2010, 101: 657-678.
|
| [17] |
ShutohN, KawasakiT, SeoT. Testing equality of mean vectors in two sample problem with missing data. Commun. Stat. Simul. Comput., 2010, 39: 487-500.
|
| [18] |
SrivastavaMS. Multivariate data with missing observations. Commun. Stat. Theory Methods, 1985, 14: 775-792.
|
| [19] |
TsukadaS. Asymptotic expansion for distribution of the trace of a covariance matrix under a two-step monotone incomplete sample. J. Multivar. Anal., 2014, 129: 206-219.
|
| [20] |
TsukadaS. Equivalence testing of mean vector and covariance matrix for multi-populations under a two-step monotone incomplete sample. J. Multivar. Anal., 2014, 132: 183-196.
|
| [21] |
TsukadaS. Unbiased estimator for a covariance matrix under two-step monotone incomplete sample. Commun. Stat. Theory Methods, 2014, 43: 1613-1629.
|
| [22] |
TsukadaS. Asymptotic properties of a correlation matrix under a two-step monotone incomplete sample. Linear Algebra Appl., 2016, 488: 86-101.
|
| [23] |
TsukadaS. Unbiased estimator for a covariance matrix in a three-step monotone incomplete sample. Linear Algebra Appl., 2019, 579: 169-205.
|
| [24] |
van BuurenSFlexible Imputation of Missing Data, 2012, Boca Raton. Chapman & Hall. .
|
| [25] |
YagiA, SeoT. A test for mean vector and simultaneous confidence intervals with three-step monotone missing data. Am. J. Math. Manag. Sci., 2014, 33: 161-175
|
| [26] |
YagiA, SeoT. Tests for equality of mean vectors and simultaneous confidence intervals with two-step or three-step monotone missing data patterns. Am. J. Math. Manag. Sci., 2015, 34: 213-233
|
RIGHTS & PERMISSIONS
School of Mathematical Sciences, University of Science and Technology of China and Springer-Verlag GmbH Germany, part of Springer Nature