Asymptotic Distribution of the Correlation Matrix in a Monotone Incomplete Sample

Shin-ichi Tsukada

Communications in Mathematics and Statistics ›› 2025, Vol. 13 ›› Issue (5) : 1285 -1311.

PDF
Communications in Mathematics and Statistics ›› 2025, Vol. 13 ›› Issue (5) : 1285 -1311. DOI: 10.1007/s40304-023-00358-2
Article
research-article

Asymptotic Distribution of the Correlation Matrix in a Monotone Incomplete Sample

Author information +
History +
PDF

Abstract

Data with missing values are often obtained using multivariate statistical analyses. It is crucial to study how to estimate parameters and test hypotheses using such data. There exists a step monotone incomplete sample as a simple model of data, which includes such missing values. In this study, we derive the asymptotic distribution of the estimator for the correlation matrix and propose a hypothesis testing method for it in a three-step monotone incomplete sample. Further, we investigate the accuracy of our results by numerical simulation.

Keywords

Asymptotic distribution / Correlation matrix / Monotone incomplete sample / 62E20 / 62F12 / 62H12 / 62H15

Cite this article

Download citation ▾
Shin-ichi Tsukada. Asymptotic Distribution of the Correlation Matrix in a Monotone Incomplete Sample. Communications in Mathematics and Statistics, 2025, 13(5): 1285-1311 DOI:10.1007/s40304-023-00358-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

AndersonT, OlkinI. Maximum likelihood estimation of the parameters of a multivariate normal distribution. Linear Algebra Appl., 1985, 70: 147-171.

[2]

AndersonTW. Maximum likelihood estimates for multivariate normal distribution when some observations are missing. J. Am. Stat. Assoc., 1957, 52: 200-203.

[3]

ChangWY, RichardsSP. Finite-sample inference with monotone incomplete multivariate normal data, I. J. Multivar. Anal., 2009, 100: 1883-1899.

[4]

ChangWY, RichardsSP. Finite-sample inference with monotone incomplete multivariate normal data, II. J. Multivar. Anal., 2010, 101: 603-620.

[5]

DempsterA, LairdNM, RubinDB. Maximum likelihood from incomplete data via the EM algorithm. J. R. Stat. Soc. Ser. B, 1977, 39: 1-38.

[6]

FujisawaH. A note on the maximum likelihood estimators for multivariate normal distribution with monotone data. Commun. Stat. Theory Methods, 1995, 24: 1377-1382.

[7]

GuptaAK, NagarDKMatrix Variate Distributions, 2000, Boca Raton. Chapman & Hall.

[8]

HaoJ, KrishnamoorthyK. Inferences on a normal covariance matrix and generalized variance with monotone missing data. J. Multivar. Anal., 2001, 78: 62-82.

[9]

HyodoM, ShutohN. Asymptotic power comparison of ${T^2}$-type test and likelihood ratio test for a mean vector based on two-step monotone missing data. Commun. Stat. Theory Methods, 2020, 49(17): 4270-4287.

[10]

HyodoM, ShutohN, SeoT, PavlenkoT. Estimation of the covariance matrix with two-step monotone missing data. Commun. Stat. Theory Methods, 2016, 45: 1910-1922.

[11]

JinadasaKG, TracyDS. Maximum likelihood estimation for multivariate normal distribution with monotone sample. Commun. Stat. Theory Methods, 1992, 21: 41-50.

[12]

KandaT, FujikoshiY. Some basic properties of the MLE’s for a multivariate normal distribution with monotone missing data. Am. J. Math. Manag. Sci., 1998, 18: 161-190

[13]

KawasakiT, SeoT. Bias correction for ${T^2}$ type statistic with two-step monotone missing data. Statistics, 2016, 50: 76-88.

[14]

KawasakiT, ShutohN, SeoT. On the asymptotic distribution of ${T^2}$-type statistic with two-step monotone missing data. J. Stat. Theory Pract., 2018, 12: 657-668.

[15]

LittleRJA, RubinDBStatistical Analysis with Missing Data, 20022Hoboken. Wiley-Interscience. .

[16]

RichardsDSP, YamadaT. The stein phenomenon for monotone incomplete multivariate normal data. J. Multivar. Anal., 2010, 101: 657-678.

[17]

ShutohN, KawasakiT, SeoT. Testing equality of mean vectors in two sample problem with missing data. Commun. Stat. Simul. Comput., 2010, 39: 487-500.

[18]

SrivastavaMS. Multivariate data with missing observations. Commun. Stat. Theory Methods, 1985, 14: 775-792.

[19]

TsukadaS. Asymptotic expansion for distribution of the trace of a covariance matrix under a two-step monotone incomplete sample. J. Multivar. Anal., 2014, 129: 206-219.

[20]

TsukadaS. Equivalence testing of mean vector and covariance matrix for multi-populations under a two-step monotone incomplete sample. J. Multivar. Anal., 2014, 132: 183-196.

[21]

TsukadaS. Unbiased estimator for a covariance matrix under two-step monotone incomplete sample. Commun. Stat. Theory Methods, 2014, 43: 1613-1629.

[22]

TsukadaS. Asymptotic properties of a correlation matrix under a two-step monotone incomplete sample. Linear Algebra Appl., 2016, 488: 86-101.

[23]

TsukadaS. Unbiased estimator for a covariance matrix in a three-step monotone incomplete sample. Linear Algebra Appl., 2019, 579: 169-205.

[24]

van BuurenSFlexible Imputation of Missing Data, 2012, Boca Raton. Chapman & Hall. .

[25]

YagiA, SeoT. A test for mean vector and simultaneous confidence intervals with three-step monotone missing data. Am. J. Math. Manag. Sci., 2014, 33: 161-175

[26]

YagiA, SeoT. Tests for equality of mean vectors and simultaneous confidence intervals with two-step or three-step monotone missing data patterns. Am. J. Math. Manag. Sci., 2015, 34: 213-233

RIGHTS & PERMISSIONS

School of Mathematical Sciences, University of Science and Technology of China and Springer-Verlag GmbH Germany, part of Springer Nature

AI Summary AI Mindmap
PDF

145

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/