For any finitely generated unital commutative associative algebra $\mathcal {R}$ over $\mathbb {C}$ and any complex finite-dimensional simple Lie algebra $\mathfrak {g}$ with a fixed Cartan subalgebra $\mathfrak {h}$, we classify all $\mathfrak {g}\otimes \mathcal {R}$-modules on $U(\mathfrak {h})$ such that $\mathfrak {h}$ as a subalgebra of $\mathfrak {g}\otimes \mathcal {R}$, acts on $U(\mathfrak {h})$ by the multiplication. We construct these modules explicitly and study their module structures.
| [1] |
BremnerM. Generalized affine Kac-Moody Lie algebras over localizations of the polynomial ring in one variable. Can. Math. Bull., 1994, 37: 21-28.
|
| [2] |
BrittenD, LauM, LemireF. Weight modules for current algebras. J. Algebra, 2015, 440: 245-263.
|
| [3] |
CaiY, TanH, ZhaoK. Module structures on $U(\mathfrak{h} )$ for Kac-Moody algebras. Sci. Sin. Math., 2017, 47: 1491-1514. in Chinese
|
| [4] |
CaiY, TanH, ZhaoK. New representations of affine Kac-Moody algebras. J. Algebra, 2020, 547: 95-115.
|
| [5] |
Chen, H., Dai, H.: A class of polynomial modules over Lie algebras ${\rm Vir}\otimes {\cal{R}}$ and $W(2,2)\otimes {\cal{R}}$
|
| [6] |
Chen, H., Gao, Y., Liu, X., Wang, L.: $U^0$-free quantum group representations
|
| [7] |
ChenQ, YaoY. Non-weight modules over algebras related to the Virasoro algebra. J. Geom. Phys., 2018, 134: 11-18.
|
| [8] |
HeY, CaiY, LüR. A class of new simple modules for $\mathfrak{sl} _{n+1}$ and the Witt algebra. J. Algebra, 2020, 541: 415-435.
|
| [9] |
HumphreysJEIntroduction to Lie Algebras and Representation Theory, Graduate Texts in Mathematics, 1972, New York. Springer-Verlag. 9
|
| [10] |
Isaacs, I. M.: Algebra: a graduate course, Reprint of the 1994 original. Graduate Studies in Mathematics, vol. 100, American Mathematical Society, Providence, RI (2009)
|
| [11] |
Kac, V. G.: Infinite Dimensional Lie Algebras, 3rd edn. Cambridge University Press, Cambridge (1990)
|
| [12] |
LauM. Classification of Harish-Chandra modules for current algebras. Proc. Am. Math. Soc., 2018, 146: 1015-1029.
|
| [13] |
MathieuO. Classification of irreducible weight modules. Ann. Inst. Fourier, 2000, 50: 537-592.
|
| [14] |
NeherE, SavageA, SenesiP. Irreducible finite-dimensional representations of equivariant map algebras. Trans. Amer. Math. Soc., 2012, 364: 2619-2646.
|
| [15] |
NilssonJ. Simple $\mathfrak{sl} _{n+1}$-module structures on $\cal{U} (\mathfrak{h} )$. J. Algebra, 2015, 424: 294-329.
|
| [16] |
NilssonJ. $\cal{U} (\mathfrak{h} )$-free modules and coherent families. J. Pure Appl. Algebra, 2016, 220: 1475-1488.
|
| [17] |
NilssonJ. A new family of simple $\mathfrak{sl} _{2n}({\mathbb{C} })$-modules. Pac. J. Math., 2016, 283: 1-19.
|
| [18] |
Takiff, S. J.: Rings of invariant polynomials for a class of Lie algebras. Trans. Amer. Math. Soc. 160, 249–262 (1971)
|
| [19] |
TanH, ZhaoK. $\cal{W} _n^{+}$ and $\cal{W} _n$-module structures on $U(\mathfrak{h} _n)$. J. Algebra, 2015, 424: 257-375
|
| [20] |
TanH, ZhaoK. Irreducible modules over Witt algebras $\cal{W} _n$ and over $\mathfrak{sl} _{n+1}({\mathbb{C} })$. Algebr. Represent. Theory, 2018, 21: 787-806.
|
| [21] |
Tauvel, P., Yu, R. W. T.: Lie Algebras and Algebraic Groups, Springer Monographs in Mathematics. Springer-Verlag, Berlin Heidelberg (2005)
|
| [22] |
Wilson, B. J.: Representations of truncated current Lie algebras. Austral. Math. Soc. Gaz. 34, 279–282 (2007)
|
Funding
National Natural Science Foundation of China(11931009)
Anhui Initiative in Quantum Information Technologies(AHY150000)
National Natural Science Foundation of China(11771410)
RIGHTS & PERMISSIONS
School of Mathematical Sciences, University of Science and Technology of China and Springer-Verlag GmbH Germany, part of Springer Nature