$U(\mathfrak {h})$-free modules,Simple Lie algebras,17B10,17B20,17B35,17B65" /> $U(\mathfrak {h})$-free modules" /> $U(\mathfrak {h})$-free modules,Simple Lie algebras,17B10,17B20,17B35,17B65" />

A Class of Polynomial Modules over Map Lie Algebras

Hongjia Chen , Han Dai , Xingpeng Liu

Communications in Mathematics and Statistics ›› 2025, Vol. 13 ›› Issue (5) : 1219 -1239.

PDF
Communications in Mathematics and Statistics ›› 2025, Vol. 13 ›› Issue (5) : 1219 -1239. DOI: 10.1007/s40304-023-00356-4
Article
research-article

A Class of Polynomial Modules over Map Lie Algebras

Author information +
History +
PDF

Abstract

For any finitely generated unital commutative associative algebra $\mathcal {R}$ over $\mathbb {C}$ and any complex finite-dimensional simple Lie algebra $\mathfrak {g}$ with a fixed Cartan subalgebra $\mathfrak {h}$, we classify all $\mathfrak {g}\otimes \mathcal {R}$-modules on $U(\mathfrak {h})$ such that $\mathfrak {h}$ as a subalgebra of $\mathfrak {g}\otimes \mathcal {R}$, acts on $U(\mathfrak {h})$ by the multiplication. We construct these modules explicitly and study their module structures.

Keywords

Map Lie algebras / $U(\mathfrak {h})$-free modules')">$U(\mathfrak {h})$-free modules / Simple Lie algebras / 17B10 / 17B20 / 17B35 / 17B65

Cite this article

Download citation ▾
Hongjia Chen, Han Dai, Xingpeng Liu. A Class of Polynomial Modules over Map Lie Algebras. Communications in Mathematics and Statistics, 2025, 13(5): 1219-1239 DOI:10.1007/s40304-023-00356-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

BremnerM. Generalized affine Kac-Moody Lie algebras over localizations of the polynomial ring in one variable. Can. Math. Bull., 1994, 37: 21-28.

[2]

BrittenD, LauM, LemireF. Weight modules for current algebras. J. Algebra, 2015, 440: 245-263.

[3]

CaiY, TanH, ZhaoK. Module structures on $U(\mathfrak{h} )$ for Kac-Moody algebras. Sci. Sin. Math., 2017, 47: 1491-1514. in Chinese

[4]

CaiY, TanH, ZhaoK. New representations of affine Kac-Moody algebras. J. Algebra, 2020, 547: 95-115.

[5]

Chen, H., Dai, H.: A class of polynomial modules over Lie algebras ${\rm Vir}\otimes {\cal{R}}$ and $W(2,2)\otimes {\cal{R}}$

[6]

Chen, H., Gao, Y., Liu, X., Wang, L.: $U^0$-free quantum group representations

[7]

ChenQ, YaoY. Non-weight modules over algebras related to the Virasoro algebra. J. Geom. Phys., 2018, 134: 11-18.

[8]

HeY, CaiY, R. A class of new simple modules for $\mathfrak{sl} _{n+1}$ and the Witt algebra. J. Algebra, 2020, 541: 415-435.

[9]

HumphreysJEIntroduction to Lie Algebras and Representation Theory, Graduate Texts in Mathematics, 1972, New York. Springer-Verlag. 9

[10]

Isaacs, I. M.: Algebra: a graduate course, Reprint of the 1994 original. Graduate Studies in Mathematics, vol. 100, American Mathematical Society, Providence, RI (2009)

[11]

Kac, V. G.: Infinite Dimensional Lie Algebras, 3rd edn. Cambridge University Press, Cambridge (1990)

[12]

LauM. Classification of Harish-Chandra modules for current algebras. Proc. Am. Math. Soc., 2018, 146: 1015-1029.

[13]

MathieuO. Classification of irreducible weight modules. Ann. Inst. Fourier, 2000, 50: 537-592.

[14]

NeherE, SavageA, SenesiP. Irreducible finite-dimensional representations of equivariant map algebras. Trans. Amer. Math. Soc., 2012, 364: 2619-2646.

[15]

NilssonJ. Simple $\mathfrak{sl} _{n+1}$-module structures on $\cal{U} (\mathfrak{h} )$. J. Algebra, 2015, 424: 294-329.

[16]

NilssonJ. $\cal{U} (\mathfrak{h} )$-free modules and coherent families. J. Pure Appl. Algebra, 2016, 220: 1475-1488.

[17]

NilssonJ. A new family of simple $\mathfrak{sl} _{2n}({\mathbb{C} })$-modules. Pac. J. Math., 2016, 283: 1-19.

[18]

Takiff, S. J.: Rings of invariant polynomials for a class of Lie algebras. Trans. Amer. Math. Soc. 160, 249–262 (1971)

[19]

TanH, ZhaoK. $\cal{W} _n^{+}$ and $\cal{W} _n$-module structures on $U(\mathfrak{h} _n)$. J. Algebra, 2015, 424: 257-375

[20]

TanH, ZhaoK. Irreducible modules over Witt algebras $\cal{W} _n$ and over $\mathfrak{sl} _{n+1}({\mathbb{C} })$. Algebr. Represent. Theory, 2018, 21: 787-806.

[21]

Tauvel, P., Yu, R. W. T.: Lie Algebras and Algebraic Groups, Springer Monographs in Mathematics. Springer-Verlag, Berlin Heidelberg (2005)

[22]

Wilson, B. J.: Representations of truncated current Lie algebras. Austral. Math. Soc. Gaz. 34, 279–282 (2007)

Funding

National Natural Science Foundation of China(11931009)

Anhui Initiative in Quantum Information Technologies(AHY150000)

National Natural Science Foundation of China(11771410)

RIGHTS & PERMISSIONS

School of Mathematical Sciences, University of Science and Technology of China and Springer-Verlag GmbH Germany, part of Springer Nature

AI Summary AI Mindmap
PDF

211

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/