$U(\mathfrak {h})$-free modules,Simple Lie algebras,17B10,17B20,17B35,17B65" /> $U(\mathfrak {h})$-free modules" /> $U(\mathfrak {h})$-free modules,Simple Lie algebras,17B10,17B20,17B35,17B65" />

A Class of Polynomial Modules over Map Lie Algebras

Hongjia Chen , Han Dai , Xingpeng Liu

Communications in Mathematics and Statistics ›› 2025, Vol. 13 ›› Issue (5) : 1219 -1239.

PDF
Communications in Mathematics and Statistics ›› 2025, Vol. 13 ›› Issue (5) : 1219 -1239. DOI: 10.1007/s40304-023-00356-4
Article
research-article

A Class of Polynomial Modules over Map Lie Algebras

Author information +
History +
PDF

Abstract

For any finitely generated unital commutative associative algebra $\mathcal {R}$ over $\mathbb {C}$ and any complex finite-dimensional simple Lie algebra $\mathfrak {g}$ with a fixed Cartan subalgebra $\mathfrak {h}$, we classify all $\mathfrak {g}\otimes \mathcal {R}$-modules on $U(\mathfrak {h})$ such that $\mathfrak {h}$ as a subalgebra of $\mathfrak {g}\otimes \mathcal {R}$, acts on $U(\mathfrak {h})$ by the multiplication. We construct these modules explicitly and study their module structures.

Keywords

Map Lie algebras / $U(\mathfrak {h})$-free modules')">$U(\mathfrak {h})$-free modules / Simple Lie algebras / 17B10 / 17B20 / 17B35 / 17B65

Cite this article

Download citation ▾
Hongjia Chen,Han Dai,Xingpeng Liu. A Class of Polynomial Modules over Map Lie Algebras. Communications in Mathematics and Statistics, 2025, 13(5): 1219-1239 DOI:10.1007/s40304-023-00356-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

Funding

National Natural Science Foundation of China(11931009)

Anhui Initiative in Quantum Information Technologies(AHY150000)

National Natural Science Foundation of China(11771410)

RIGHTS & PERMISSIONS

School of Mathematical Sciences, University of Science and Technology of China and Springer-Verlag GmbH Germany, part of Springer Nature

AI Summary AI Mindmap
PDF

0

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/