Generalizations of the Erdős–Kac Theorem and the Prime Number Theorem
Biao Wang , Zhining Wei , Pan Yan , Shaoyun Yi
Communications in Mathematics and Statistics ›› 2025, Vol. 13 ›› Issue (5) : 1177 -1197.
Generalizations of the Erdős–Kac Theorem and the Prime Number Theorem
In this paper, we study the linear independence between the distribution of the number of prime factors of integers and that of the largest prime factors of integers. Under a restriction on the largest prime factors of integers, we will refine the Erdős–Kac Theorem and Loyd’s recent result on Bergelson and Richter’s dynamical generalizations of the Prime Number Theorem, respectively. At the end, we will show that the analogue of these results holds with respect to the Erdős–Pomerance Theorem as well.
Erdős–Kac Theorem / Erdős–Pomerance Theorem / Largest prime factor / Prime Number Theorem / 11K36 / 37A44
| [1] |
|
| [2] |
Bassily, N.L., Kátai, I., Wijsmuller, M.: Number of prime divisors of $\phi _k(n)$, where $\phi _k$ is the $k$-fold iterate of $\phi $. J. Number Theory 65(2), 226–239 (1997). https://doi.org/10.1006/jnth.1997.2164 |
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
Elboim, D., Gorodetsky, O.: Multiplicative arithmetic functions and the Ewens measure. To appear in Israel Journal of Mathematics (2022). Preprint available at arxiv:1909.00601 |
| [7] |
Elliott, P.D.T.A.: Probabilistic number theory. I. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 239, Springer, (1979) |
| [8] |
Elliott, P.D.T.A.: Probabilistic Number Theory. II. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 240, Springer, (1980) |
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
Granville, A., Soundararajan, K.: Sieving and the Erdős–Kac theorem. In: Equidistribution in Number Theory, an Introduction. NATO Science Series II: Mathematics, Physics and Chemistry, vol. 237, pp. 15–27. Springer, (2007). https://doi.org/10.1007/978-1-4020-5404-4_2 |
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
Landau, E.: Handbuch der Lehre Von der Verteilung der Primzahlen. 2 Bände, Chelsea Publishing Co., New York, (1953). 2nd ed, With an appendix by Paul T. Bateman |
| [19] |
Loyd, K.: A dynamical approach to the asymptotic behavior of the sequence $\Omega (n)$. Ergodic Theory Dynam. Systems, 1–22 (2022). in press. https://doi.org/10.1017/etds.2022.81 |
| [20] |
von Mangoldt, H.C.F.: Beweis der Gleichung $\sum _{k=1}^\infty \frac{\mu (k)}{k}=0$ vol. 2, pp. 835–852. Sitzungsk berichte der Königlich Preussischen Akademie der Wissenschaften zu Berlin, (1897). https://biodiversitylibrary.org/page/29982413 |
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
School of Mathematical Sciences, University of Science and Technology of China and Springer-Verlag GmbH Germany, part of Springer Nature
/
| 〈 |
|
〉 |