Generalizations of the Erdős–Kac Theorem and the Prime Number Theorem

Biao Wang , Zhining Wei , Pan Yan , Shaoyun Yi

Communications in Mathematics and Statistics ›› 2025, Vol. 13 ›› Issue (5) : 1177 -1197.

PDF
Communications in Mathematics and Statistics ›› 2025, Vol. 13 ›› Issue (5) : 1177 -1197. DOI: 10.1007/s40304-023-00354-6
Article
research-article

Generalizations of the Erdős–Kac Theorem and the Prime Number Theorem

Author information +
History +
PDF

Abstract

In this paper, we study the linear independence between the distribution of the number of prime factors of integers and that of the largest prime factors of integers. Under a restriction on the largest prime factors of integers, we will refine the Erdős–Kac Theorem and Loyd’s recent result on Bergelson and Richter’s dynamical generalizations of the Prime Number Theorem, respectively. At the end, we will show that the analogue of these results holds with respect to the Erdős–Pomerance Theorem as well.

Keywords

Erdős–Kac Theorem / Erdős–Pomerance Theorem / Largest prime factor / Prime Number Theorem / 11K36 / 37A44

Cite this article

Download citation ▾
Biao Wang, Zhining Wei, Pan Yan, Shaoyun Yi. Generalizations of the Erdős–Kac Theorem and the Prime Number Theorem. Communications in Mathematics and Statistics, 2025, 13(5): 1177-1197 DOI:10.1007/s40304-023-00354-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

AlladiK. Duality between prime factors and an application to the prime number theorem for arithmetic progressions. J. Number Theory, 1977, 9(4): 436-451.

[2]

Bassily, N.L., Kátai, I., Wijsmuller, M.: Number of prime divisors of $\phi _k(n)$, where $\phi _k$ is the $k$-fold iterate of $\phi $. J. Number Theory 65(2), 226–239 (1997). https://doi.org/10.1006/jnth.1997.2164

[3]

BergelsonV, RichterFK. Dynamical generalizations of the prime number theorem and disjointness of additive and multiplicative semigroup actions. Duke Math. J., 2022, 171(15): 3133-3200.

[4]

DelangeH. On some arithmetical functions. Illinois J. Math., 1958, 2: 81-87.

[5]

DuanL, WangB, YiS. Analogues of Alladi’s formula over global function fields. Finite Fields Appl., 2021, 74. 101874

[6]

Elboim, D., Gorodetsky, O.: Multiplicative arithmetic functions and the Ewens measure. To appear in Israel Journal of Mathematics (2022). Preprint available at arxiv:1909.00601

[7]

Elliott, P.D.T.A.: Probabilistic number theory. I. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 239, Springer, (1979)

[8]

Elliott, P.D.T.A.: Probabilistic Number Theory. II. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 240, Springer, (1980)

[9]

ElmaE, LiuY-R. Number of prime factors with a given multiplicity. Can. Math. Bull., 2021.

[10]

ErdősP. On the distribution function of additive functions. Ann. Math., 1946, 2(47): 1-20.

[11]

ErdősP, KacM. The Gaussian law of errors in the theory of additive number theoretic functions. Amer. J. Math., 1940, 62: 738-742.

[12]

ErdősP, PomeranceC. On the normal number of prime factors of $\varphi (n)$. Rocky Mountain J. Math., 1985, 15(2): 343-352.

[13]

GranvilleA, KoukoulopoulosD. Beyond the LSD method for the partial sums of multiplicative functions. Ramanujan J., 2019, 49(2): 287-319.

[14]

Granville, A., Soundararajan, K.: Sieving and the Erdős–Kac theorem. In: Equidistribution in Number Theory, an Introduction. NATO Science Series II: Mathematics, Physics and Chemistry, vol. 237, pp. 15–27. Springer, (2007). https://doi.org/10.1007/978-1-4020-5404-4_2

[15]

IvićA, PomeranceC. Estimates for certain sums involving the largest prime factor of an integer. Colloq. Math. Soc. János Bolyai, 1984, 34: 769-789

[16]

KhanR, MilinovichMB, SubediU. A weighted version of the Erdős-Kac Theorem. J. Number Theory, 2022, 239: 1-20.

[17]

KuralM, McDonaldV, SahA. Möbius formulas for densities of sets of prime ideals. Arch. Math., 2020, 115: 53-66.

[18]

Landau, E.: Handbuch der Lehre Von der Verteilung der Primzahlen. 2 Bände, Chelsea Publishing Co., New York, (1953). 2nd ed, With an appendix by Paul T. Bateman

[19]

Loyd, K.: A dynamical approach to the asymptotic behavior of the sequence $\Omega (n)$. Ergodic Theory Dynam. Systems, 1–22 (2022). in press. https://doi.org/10.1017/etds.2022.81

[20]

von Mangoldt, H.C.F.: Beweis der Gleichung $\sum _{k=1}^\infty \frac{\mu (k)}{k}=0$ vol. 2, pp. 835–852. Sitzungsk berichte der Königlich Preussischen Akademie der Wissenschaften zu Berlin, (1897). https://biodiversitylibrary.org/page/29982413

[21]

PillaiSS. Generalisation of a theorem of Mangoldt. Proc. Indian Acad. Sci. Sect. A., 1940, 11: 13-20.

[22]

SelbergS. Zur Theorie der quadratfreien Zahlen. Math. Z., 1939, 44(1): 306-318.

[23]

SongJM. Sums of nonnegative multiplicative functions over integers without large prime factors. II. Acta Arith., 2002, 102(2): 105-129.

[24]

TenenbaumG. Moyennes effectives de fonctions multiplicatives complexes. Ramanujan J., 2017, 44(3): 641-701.

[25]

TenenbaumG. Correction to: Moyennes effectives de fonctions multiplicatives complexes. Ramanujan J., 2020, 53(1): 243-244.

[26]

TenenbaumG, WuJ. Moyennes de certaines fonctions multiplicatives sur les entiers friables. J. Reine Angew. Math., 2003, 564: 119-166.

[27]

WangB. Dynamics on the number of prime divisors for additive arithmetic semigroups. Finite Fields Appl., 2022, 81. 102029

Funding

China Postdoctoral Science Foundation(2021TQ0350)

RIGHTS & PERMISSIONS

School of Mathematical Sciences, University of Science and Technology of China and Springer-Verlag GmbH Germany, part of Springer Nature

AI Summary AI Mindmap
PDF

179

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/