Density Power Divergence Estimator for General Integer-Valued Time Series with Exogenous Covariates

Mamadou Lamine Diop , William Kengne

Communications in Mathematics and Statistics ›› 2025, Vol. 13 ›› Issue (5) : 1075 -1115.

PDF
Communications in Mathematics and Statistics ›› 2025, Vol. 13 ›› Issue (5) : 1075 -1115. DOI: 10.1007/s40304-023-00351-9
Article
research-article

Density Power Divergence Estimator for General Integer-Valued Time Series with Exogenous Covariates

Author information +
History +
PDF

Abstract

In this article, we study a robust estimation method for a general class of integer-valued time series models. The conditional distribution of the process belongs to a broad class of distributions and unlike the classical autoregressive framework, the conditional mean of the process also depends on some exogenous covariates. We derive a robust inference procedure based on the minimum density power divergence. Under certain regularity conditions, we establish that the proposed estimator is consistent and asymptotically normal. In the case where the conditional distribution belongs to the exponential family, we provide sufficient conditions for the existence of a stationary and ergodic $\tau $-weakly dependent solution. Simulation experiments are conducted to illustrate the empirical performances of the estimator. An application to the number of transactions per minute for the stock Ericsson B is also provided.

Keywords

Robust estimation / Minimum density power divergence / Integer-valued time series models / Exogenous covariates / 62M10 / 62F12 / 62F35

Cite this article

Download citation ▾
Mamadou Lamine Diop, William Kengne. Density Power Divergence Estimator for General Integer-Valued Time Series with Exogenous Covariates. Communications in Mathematics and Statistics, 2025, 13(5): 1075-1115 DOI:10.1007/s40304-023-00351-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

AgostoA, CavaliereG, KristensenD, RahbekA. Modeling corporate defaults: poisson autoregressions with exogenous covariates (parx). J. Empir. Financ., 2016, 38: 640-663

[2]

AhmadA, FrancqC. Poisson qmle of count time series models. J. Time Ser. Anal., 2016, 37(3): 291-314

[3]

AknoucheA, FrancqC. Count and duration time series with equal conditional stochastic and mean orders. Econom. Theory, 2021, 37(2): 248-280

[4]

Al-OshMA, AlzaidAA. First-order integer-valued autoregressive (inar (1)) process. J. Time Ser. Anal., 1987, 8(3): 261-275

[5]

AlzaidA, Al-OshM. An integer-valued pth-order autoregressive structure (inar (p)) process. J. Appl. Probab., 1990, 27(2): 314-324

[6]

Andrews, DonaldWK. Testing when a parameter is on the boundary of the maintained hypothesis. Econometrica, 2001, 69(3): 683-734

[7]

BasuA, HarrisIR, HjortNL, JonesM. Robust and efficient estimation by minimising a density power divergence. Biometrika, 1998, 85(3): 549-559

[8]

BasuA, LindsayBG. Minimum disparity estimation for continuous models: efficiency, distributions and robustness. Ann. Inst. Stat. Math., 1994, 46(4): 683-705

[9]

BelhajF, AbaoubE, MahjoubiMN. Number of transactions, trade size and the volume-volatility relationship: an interday and intraday analysis on the tunisian stock market. Int. Bus. Res., 2015, 86135

[10]

BeranR. Minimum hellinger distance estimates for parametric models. Ann. Stat., 1977.

[11]

BrännäsK, Shahiduzzaman QuoreshiA. Integer-valued moving average modelling of the number of transactions in stocks. Appl. Financ. Econ., 2010, 20(18): 1429-1440

[12]

ChenH, LiQ, ZhuF. A new class of integer-valued GARCH models for time series of bounded counts with extra-binomial variation. AStA Adv. Stat. Anal., 2021, 106(2): 243-270

[13]

CoxDR, GudmundssonG, LindgrenG, BondessonL, HarsaaeE, LaakeP, JuseliusK, LauritzenSL. Statistical analysis of time series: Some recent developments [with discussion and reply]. Scand. J. Stat., 1981, 8(2): 93-115

[14]

CuiY, ZhengQ. Conditional maximum likelihood estimation for a class of observation-driven time series models for count data. Stat. & Probab. Lett., 2017, 123: 193-201

[15]

DavisRA, LiuH. Theory and inference for a class of nonlinear models with application to time series of counts. Stat. Sin., 2016, 26(4): 1673-1707

[16]

DavisRA, WuR. A negative binomial model for time series of counts. Biometrika, 2009, 96(3): 735-749

[17]

DiopML, KengneW. Testing parameter change in general integer-valued time series. J. Time Ser. Anal., 2017, 38(6): 880-894

[18]

DiopML, KengneW. Piecewise autoregression for general integer-valued time series. J. Stat. Plan. Inference, 2021, 211: 271-286

[19]

DiopML, KengneW. Poisson qmle for change-point detection in general integer-valued time series models. Metrika, 2022, 85(3): 373-403

[20]

DoukhanP, FokianosK, TjøstheimD. On weak dependence conditions for poisson autoregressions. Stat. & Probab. Lett., 2012, 82(5): 942-948

[21]

Doukhan, P., Fokianos, K., Tjøstheim, D., et al.: Correction to “on weak dependence conditions for poisson autoregressions”. [statist. probab. lett. 82, 942–948 (2012)]. Stat. Probab. Lett. 83(8), 1926–1927 (2013)

[22]

DoukhanP, FokianosK, TjøstheimD, et al.. Correction to “on weak dependence conditions for poisson autoregressions”. Stat. & Probab. Lett., 2013, 83(8): 1926-1927

[23]

DoukhanP, KengneW. Inference and testing for structural change in general poisson autoregressive models. Electron. J. Stat., 2015, 9: 1267-1314

[24]

DoukhanP, WintenbergerO. Weakly dependent chains with infinite memory. Stoch. Process. Appl., 2008, 118(11): 1997-2013

[25]

ElsaiedH, FriedR. Robust fitting of inarch models. J. Time Ser. Anal., 2014, 35(6): 517-535

[26]

FokianosK, FriedR. Interventions in ingarch processes. J. Time Ser. Anal., 2010, 31(3): 210-225

[27]

FokianosK, FriedR. Interventions in log-linear poisson autoregression. Stat. Model., 2012, 12(4): 299-322

[28]

FokianosK, NeumannMH. A goodness-of-fit test for poisson count processes. Electron. J. Stat., 2013, 7: 793-819

[29]

FokianosK, RahbekA, TjøstheimD. Poisson autoregression. J. Am. Stat. Assoc., 2009, 104(488): 1430-1439

[30]

FokianosK, StøveB, TjøstheimD, DoukhanP. Multivariate count autoregression. Bernoulli, 2020, 26(1): 471-499

[31]

FokianosK, TruquetL. On categorical time series models with covariates. Stoch. Process. Appl., 2019, 129(9): 3446-3462

[32]

FrancqC, et al.. Qml inference for volatility models with covariates. Econom. Theor., 2019, 35(1): 37-72

[33]

FriedR, AgueusopI, BornkampB, FokianosK, FruthJ, IckstadtK. Retrospective bayesian outlier detection in ingarch series. Stat. Comput., 2015, 25(2): 365-374

[34]

KangJ, LeeS. Parameter change test for poisson autoregressive models. Scand. J. Stat., 2014, 41(4): 1136-1152

[35]

KedemB, FokianosKRegression models for time series analysis, 2002, Wiley, NJ. Hoboken.

[36]

KimB, LeeS. Robust estimation for zero-inflated poisson autoregressive models based on density power divergence. J. Stat. Comput. Simul., 2017, 87(15): 2981-2996

[37]

KimB, LeeS. Robust estimation for general integer-valued time series models. Ann. Inst. Stat. Math., 2020, 72(6): 1371-1396

[38]

KimB, LeeS, KimD. Robust estimation for bivariate poisson ingarch models. Entropy, 2021, 233367

[39]

KouniasEG, WengTS. An inequality and almost sure convergence. Ann. Math. Stat., 1969, 40(3): 1091-1093

[40]

LiboschikT, FokianosK, FriedR. tscount: An r package for analysis of count time series following generalized linear models. J. Stat. Softw., 2017, 82: 1-51

[41]

LouhichiW. What drives the volume-volatility relationship on euronext paris?. Int. Rev. Financ. Anal., 2011, 20(4): 200-206

[42]

McKenzieE. Some simple models for discrete variate time series 1. JAWRA J. Am. Water Resour. Assoc., 1985, 21(4): 645-650

[43]

PedersenRS, RahbekA. Testing garch-x type models. Econom. Theor., 2019, 35(5): 1012-1047

[44]

SimpsonDG. Minimum hellinger distance estimation for the analysis of count data. J. Am. Stat. Assoc., 1987, 82(399): 802-807

[45]

Takaishi, T., Chen, T.T.: The relationship between trading volumes, number of transactions, and stock volatility in garch models. In: Journal of physics: conference series, vol. 738, p. 012097. IOP Publishing (2016)

[46]

TamuraRN, BoosDD. Minimum hellinger distance estimation for multivariate location and covariance. J. Am. Stat. Assoc., 1986, 81(393): 223-229

[47]

WarwickJ, JonesM. Choosing a robustness tuning parameter. J. Stat. Comput. Simul., 2005, 75(7): 581-588

[48]

XiongL, ZhuF. Robust quasi-likelihood estimation for the negative binomial integer-valued garch (1, 1) model with an application to transaction counts. J. Stat. Plan. Inference, 2019, 203: 178-198

[49]

XiongL, ZhuF. Minimum density power divergence estimator for negative binomial integer-valued garch models. Commun. Math. Stat., 2021, 10: 233-261

RIGHTS & PERMISSIONS

School of Mathematical Sciences, University of Science and Technology of China and Springer-Verlag GmbH Germany, part of Springer Nature

AI Summary AI Mindmap
PDF

146

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/