Continuous Cluster Expansion for Field Theories

Fang-Jie Zhao

Communications in Mathematics and Statistics ›› 2025, Vol. 13 ›› Issue (4) : 931 -948.

PDF
Communications in Mathematics and Statistics ›› 2025, Vol. 13 ›› Issue (4) : 931 -948. DOI: 10.1007/s40304-023-00346-6
Article
research-article

Continuous Cluster Expansion for Field Theories

Author information +
History +
PDF

Abstract

A new version of the cluster expansion is proposed without breaking the translation and rotation invariance. As an application of this technique, we construct the connected Schwinger functions of the regularized $\phi ^4$ theory in a continuous way.

Keywords

Constructive field theory / Cluster expansion / Translation and rotation invariance / Connected Schwinger function / 81T08

Cite this article

Download citation ▾
Fang-Jie Zhao. Continuous Cluster Expansion for Field Theories. Communications in Mathematics and Statistics, 2025, 13(4): 931-948 DOI:10.1007/s40304-023-00346-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

AbdesselamA, RivasseauV. An explicit large versus small field multiscale cluster expansion. Rev. Math. Phys., 1997, 9123

[2]

AbdesselamA, RivasseauV. Explicit fermionic tree expansions. Lett. Math. Phys., 1998, 44: 77-88

[3]

AbdesselamA, MagnenJ, RivasseauV. Bosonic monocluster expansion. Commun. Math. Phys., 2002, 229: 183-207

[4]

BattleG, FederbushP. A phase cell cluster expansion for Euclidean field theories. Ann. Phys., 1982, 142: 95-139

[5]

BattleG. How to recover Euclidean invariance from an ondelette cluster expansion. Annales de l’I.H.P Physique théorique, 1988, 49: 403-413

[6]

BattleGWavelets and Renormalization, 1999, Singapore. World Scientific.

[7]

BissacotR, FernándezR, ProcacciA. On the convergence of cluster expansions for polymer gases. J. Stat. Phys., 2010, 139: 598-617

[8]

BrydgesDC, KennedyT. Mayer expansions and the Hamilton–Jacobi equation. J. Stat. Phys., 1987, 48: 19-49

[9]

Brydges, D.C., Fernández, R.: Functional integrals and their applications (1993). https://www.semanticscholar.org/paper/Functional-Integrals-and-their-Applications-Brydges/0428cbec60279951b3cc490d9231d28efd997ea0

[10]

BrydgesD, DimockJ, HurdTR. The short distance behavior of $(\phi ^4)_3$. Commun. Math. Phys., 1995, 172: 143-186

[11]

DisertoriM, RivasseauV. Continuous constructive fermionic renormalization. Annales Henri Poincaré, 2000, 1: 1-57

[12]

DuneauM, IagolnitzerD, SouillardB. Decrease properties of truncated correlation functions and analyticity properties for classical lattices and continuous systems. Commun. Math. Phys., 1973, 31: 191-208

[13]

FeldmanJ, MagnenJ, RivasseauV, SénéorR. Construction and Borel summability of infrared $\Phi ^4_4$ by a phase space expansion. Commun. Math. Phys., 1987, 109: 437-480

[14]

FernándezR, ProcacciA. Cluster expansion for abstract polymer models. New bounds from an old approach. Commun. Math. Phys., 2007, 274: 123-140

[15]

GlimmJ, JaffeAQuantum Physics: A Functional Integral Point of View, 1987, Berlin. Springer.

[16]

KingC. The $U(1)$ Higgs model, II. The infinite volume limit. Commun. Math. Phys., 1986, 103: 323-349

[17]

MagnenJ, RivasseauV. Constructive $\phi ^4$ field theory without tears. Annales Henri Poincaré, 2008, 9: 403-424

[18]

MagnenJ, SénéorR. Phase space cell expansion and Borel summability for the Euclidean $\varphi ^4_3$ theory. Commun. Math. Phys., 1977, 56: 237-276

[19]

RivasseauVFrom Perturbative to Constructive Renormalization, 1991, Princeton. Princeton University Press.

[20]

RivasseauV. Constructive matrix theory. J. High Energy Phys., 2007, 0709008

[21]

RivasseauV, WangZ. Corrected loop vertex expansion for $\Phi ^4_2$ theory. J. Math. Phys., 2015, 56062301

[22]

RuelleDStatistical Mechanics: Rigorous Results, 1969, New York. WA Benjamin, Inc..

[23]

WatanabeH. Block spin approach to $\phi ^4_3$ field theory. J. Stat. Phys., 1989, 54: 171-190

RIGHTS & PERMISSIONS

School of Mathematical Sciences, University of Science and Technology of China and Springer-Verlag GmbH Germany, part of Springer Nature

AI Summary AI Mindmap
PDF

120

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/