$(g, \nu )$,$\mathfrak {A}$-Isotropic,$\mathfrak {A}$-Principal,Complex conjugation,Complex hyperbolic quadric,53C40,53C55" /> $(g, \nu )$" /> $\mathfrak {A}$-Isotropic" /> $\mathfrak {A}$-Principal" /> $(g, \nu )$,$\mathfrak {A}$-Isotropic,$\mathfrak {A}$-Principal,Complex conjugation,Complex hyperbolic quadric,53C40,53C55" />

Fischer–Marsden Conjecture and Equation in the Complex Hyperbolic Quadric

Young Jin Suh

Communications in Mathematics and Statistics ›› 2025, Vol. 13 ›› Issue (4) : 891 -929.

PDF
Communications in Mathematics and Statistics ›› 2025, Vol. 13 ›› Issue (4) : 891 -929. DOI: 10.1007/s40304-023-00345-7
Article
research-article

Fischer–Marsden Conjecture and Equation in the Complex Hyperbolic Quadric

Author information +
History +
PDF

Abstract

By using the notion of Fischer–Marsden equation on real hypersurfaces in the complex hyperbolic quadric ${{Q^m}^*} = {{\text {SO}}^o_{2,m}/{\text {SO}}_2 {\text {SO}}_m}$, we can assert that there does not exist a non-trivial solution $(g,{\nu })$ of Fischer–Marsden equation on real hypersurfaces with isometric Reeb flow in the complex hyperbolic quadric ${Q^m}^*$. Next, as an application we also show that there does not exist a non-trivial solution $(g,{\nu })$ of the Fischer–Marsden equation on contact real hypersurfaces in the complex hyperbolic quadric ${Q^m}^*$. Consequently, the Fischer–Marsden conjecture is true on these two kinds of real hypersurfaces in the complex hyperbolic quadric ${Q^m}^*$.

Keywords

Fischer–Marsden equation / $(g, \nu )$')">Non-trivial solution $(g, \nu )$ / $\mathfrak {A}$-Isotropic')">$\mathfrak {A}$-Isotropic / $\mathfrak {A}$-Principal')">$\mathfrak {A}$-Principal / Complex conjugation / Complex hyperbolic quadric / 53C40 / 53C55

Cite this article

Download citation ▾
Young Jin Suh. Fischer–Marsden Conjecture and Equation in the Complex Hyperbolic Quadric. Communications in Mathematics and Statistics, 2025, 13(4): 891-929 DOI:10.1007/s40304-023-00345-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Berndt, J.: Über Untermannigfaltigkeiten von Komplexen Raumformen. Ph.D. thesis, Univesität zu Köln (1989)

[2]

Berndt, J., Suh, Y. J.: Real hypersurfaces in Hermitian symmetric spaces, vol. 5 in the series Advances in Analysis and Geometry. Walter de Gruyter GmbH, Berlin/Boston (2022)

[3]

Besse, A.L.: Einstein Manifolds. Springer-Verlag (2008)

[4]

Blair, D.E.: Contact Manifolds in Riemannian Geometry. In: Lecture Notes in Mathematics, vol. 509. Springer-Verlag, Berlin (1976)

[5]

Blair, D.E.: Two remarks on contact metric structures. Tôhoku Math. J. 29, 319–324 (1977)

[6]

BoothbyWM, WangHC. On contact manifolds. Ann. Math., 1958, 2(68): 721-734

[7]

BourguignonJP. Une stratification de l’espace des structures riemanniennes. Compos. Math., 1975, 30: 1-41

[8]

Bourguignon, J.P.: Ricci curvature and Einstein metrics, global differential geometry and global analysis (Berlin, 1979). In: Lecture Notes in Mathematics, vol. 838, pp. 42-63. Springer, Berlin (1981)

[9]

CatinoG, MazzieriL. Gradient Einstein solitons. Nonlinear Anal., 2016, 132: 66-94

[10]

ChaubeySK, SuhYJ, DeUC. Characterizations of the Lorentzian manifolds admitting a type of semi-symmetric metric connection. Anal. Math. Phys., 2020, 10415

[11]

ChaubeySK, DeUC, SuhYJ. Kenmotsu manifolds satisfying the Fischer-Marsden equation. J. Korean Math. Soc., 2021, 58(3): 597-607

[12]

EberleinPBGeometry of Nonpositively Curved Manifolds, 1996, Chikago, IL. University of Chikago Press.

[13]

FischerAE, MarsdenJE. Manifolds of Riemannian metrics with prescribed scalar curvature. Bull. Am. Math. Soc., 1974, 80: 479-484

[14]

KleinS, SuhYJ. Contact real hypersurfaces in the complex hyperbolic quadric. Ann. Mat. Pura Appl., 2019, 198: 1481-1494

[15]

Knapp, A.W.: Lie Groups Beyond an Introduction. Progress in Mathematics, Birkhäuser (2002)

[16]

Kobayashi, S., Nomizu, V.: Foundations of Differential Geometry, vol. II. A Wiley-Interscience Publications, Wiley Classics Library Ed. (1996)

[17]

LeeH, SuhYJ. Commuting Jacobi operators on real hypersurfaces of type B in the complex quadric. Math. Phys. Anal. Geom., 2020, 23421

[18]

LeeH, SuhYJ. Real hypersufaces with recurrent normal Jacobi operator in the complex quadric. J. Geom. Phys., 2018, 123: 463-474

[19]

MontielS, RomeroA. On some real hypersurfaces in a complex hyperbolic space. Geom. Dedicata, 1991, 212: 355-364

[20]

Morgan, J., Tian, G.: Ricci flow and Poincaré Conjecture, vol. 3. Clay Mathematics Institute Monographs. American Mathematical Society, (2007)

[21]

NomizuK. Invariant affine connections on homogeneous spaces. Am. J. Math., 1954, 76: 33-65

[22]

OkumuraM. Some real hypersurfaces of a complex projective space. Trans. Am. Math. Soc., 1975, 212: 355-364

[23]

Reckziegel, H.: On the geometry of the complex quadric. In: Geometry and Topology of Submanifolds VIII (Brussels/Nordfjordeid 1995), pp. 302–315. World Scientific Publishing, River Edge (1995)

[24]

RomeroA. Some examples of indefinite complete complex Einstein hypersurfaces not locally symmetric. Proc. Am. Math. Soc., 1986, 98: 283-286

[25]

RomeroA. On a certain class of complex Einstein hypersurfaces in indefinite complex space forms. Math. Z., 1986, 192: 627-635

[26]

SmythB. Differential geometry of complex hypersurfaces. Ann. Math., 1967, 85: 246-266

[27]

SmythB. Homogeneous complex hypersurfaces. J. Math. Soc. Jpn., 1968, 20: 643-647

[28]

SuhYJ. Real hypersurfaces of type B in complex two-plane Grassmannians. Mon. Math., 2006, 147: 337-355

[29]

SuhYJ. Hypersurfaces with isometric Reeb flow in complex hyperbolic two-plane Grassmannians. Adv. Appl. Math., 2013, 50: 645-659

[30]

SuhYJ. Real hypersurfaces in complex two-plane Grassmannians with harmonic curvature. J. Math. Pures Appl., 2013, 100: 16-33

[31]

SuhYJ. Real hypersurfaces in the complex quadric with Reeb parallel shape operator. Int. J. Math., 2014, 2517

[32]

SuhYJ. Real hypersurfaces in the complex quadric with parallel Ricci tensor. Adv. Math., 2015, 281: 886-905

[33]

SuhYJ. Real hypersurfaces in complex quadric with harmonic curvature. J. Math. Pures Appl., 2016, 106: 393-410

[34]

SuhYJ. Pseudo-Einstein real hypersurfaces in the complex quadric. Math. Nachr., 2017, 290: 1884-1904

[35]

SuhYJ. Pseudo-anti commuting Ricci tensor and Ricci soliton real hypersurfaces in the complex quadric. J. Math. Pures Appl., 2017, 107: 429-450

[36]

SuhYJ. Real hypersurfaces in the complex hyperbolic quadrics with isometric Reeb flow. Commun. Contemp. Math., 2018, 2020

[37]

SuhYJ. Ricci soliton and pseudo-Einstein real hypersurfaces in the complex hyperbolic quadric. J. Geom. Phys., 2021, 162103888

[38]

SuhYJ, LeeH, WooC. Generalized Killing Ricci tensor for real hypersurfaces in the complex hyperbolic quadric. Rev. Real Acad. Cienc. Exact. Físicas Nat. Ser. A, 2021, 11531

[39]

SuhYJ, PerezJD, WooC. Real hypersurfaces in the complex hyperbolic quadric with parallel structure Jacobi operator. Publ. Math. Debr., 2019, 94: 75-107

Funding

National Research Foundation of Korea(NRF 2018-R1D1A1B-05040381)

RIGHTS & PERMISSIONS

School of Mathematical Sciences, University of Science and Technology of China and Springer-Verlag GmbH Germany, part of Springer Nature

AI Summary AI Mindmap
PDF

159

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/