Symbolic Treatment of Trigonometric Parametrizations: The General Unirational Case and Applications

Alberto Lastra , Juan Rafael Sendra , Juana Sendra

Communications in Mathematics and Statistics ›› 2023, Vol. 13 ›› Issue (2) : 481 -505.

PDF
Communications in Mathematics and Statistics ›› 2023, Vol. 13 ›› Issue (2) : 481 -505. DOI: 10.1007/s40304-023-00334-w
Article

Symbolic Treatment of Trigonometric Parametrizations: The General Unirational Case and Applications

Author information +
History +
PDF

Abstract

In this paper, we consider symbolic (hybrid trigonometric) parametrizations defined as tuples of real rational expressions involving circular and hyperbolic trigonometric functions as well as monomials, with the restriction that variables in each block of functions are different. We prove that the varieties parametrizable in this way are exactly the class of real unirational varieties of any dimension. In addition, we provide symbolic algorithms to implicitize and to convert a hybrid trigonometric parametrization into a unirational one, and vice versa. We illustrate by some examples the applicability of having these different types of parametrizations, namely, hybrid trigonometric and unirational.

Keywords

Trigonometric parametrization / Hyperbolic parametrization / Implicitization algorithm / Unirational algebraic variety / Applications / Symbolic computation

Cite this article

Download citation ▾
Alberto Lastra, Juan Rafael Sendra, Juana Sendra. Symbolic Treatment of Trigonometric Parametrizations: The General Unirational Case and Applications. Communications in Mathematics and Statistics, 2023, 13(2): 481-505 DOI:10.1007/s40304-023-00334-w

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

AbramowitzM, StegunIAHandbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Applied Mathematics Series, 1964WashingtonNational Bureau of Standards55

[2]

AndradasC, RecioT, SendraJR, TaberaLF. On the simplification of the coefficients of a parametrization. J. Symb. Comput., 2009, 442192-210

[3]

Brilleaud, M., Mazure, M.-L.: Mixed hyperbolic/trigonometric spaces for design. Comput. Math. Appl. 64(8), 2459–2477 (2012)

[4]

BeltramettiMC, MassoneAM, PianaM. Hough transform of special classes of curves. SIAM J. Imaging Sci., 2013, 61391-412

[5]

BeltramettiMC, RobbianoL. An algebraic approach to Hough transforms. J. Algebra, 2012, 371: 669-681

[6]

CaravantesJ, SendraJR, SevillaD, VillarinoC. Transforming ODEs and PDEs from radical coefficients to rational coefficients. Mediterr. J. Math., 2021, 18: 96

[7]

CarnicerJM, MainarE, PeñaJM. Shape preservation regions for six-dimensional spaces. Adv. Comput. Math., 2007, 261–3121-136

[8]

CarnicerJM, MainarE, PeñaJM. Interpolation on cycloidal spaces. J. Approx. Theory, 2014, 187: 18-29

[9]

CarnicerJM, MainarE, PeñaJM. On the critical lengths of cycloidal spaces. Constr. Approx., 2014, 393573-583

[10]

ChenY, WangQ. New complexiton solutions of (1+1)-dimensional dispersive long wave equation. Commun. Theor. Phys., 2006, 45: 224-230

[11]

ChengJ, LazardS, PeñarandaL, PougetM, RouillierF, TsigaridasE. On the topology of real algebraic plane curves. Math. Comput. Sci., 2010, 41113-137

[12]

FengR, GaoX-S. A polynomial time algorithm for finding rational general solutions of first order autonomous ODEs. J. Symb. Comput., 2006, 417739-762

[13]

Gonzalez-VegaL, NeculaI. Efficient topology determination of implicitely defined algebraic plane curves. Comput. Aided Geom. Des., 2002, 19: 719-743

[14]

GraseggerG, LastraA, SendraJR, WinklerF. A solution method for autonomous first-order algebraic partial. J. Comput. Appl. Math., 2016, 300: 119-133

[15]

HoonH, SchichoJ. Algorithms for trigonometric curves (simplification, implicitization, parameterization). J. Symb. Comput., 1998, 263279-300

[16]

Hoschek, J., Lasser, D.: Fundamentals of computer aided geometric design, translated from the 1992 German edition by Larry L. Schumaker. A K Peters Ltd, Wellesley, MA (1993)

[17]

HussainM, SaddiqaM. Positive interpolation by trigonometric functions. Afr. Mat., 2016, 271–2239-262

[18]

JuhászI, RóthA. Closed rational trigonometric curves and surfaces. J. Comput. Appl. Math., 2010, 23482390-2404

[19]

KaplanM, ÜnsalM, BekirÖA. Exact solutions of nonlinear Schrödinger equation by using symbolic computation. Math. Methods Appl. Sci., 2016, 3982093-2099

[20]

KolebajeOT, AkinyemiP, ObendeM. Travelling wave solutions of the generalized Zakharov–Kuznetsov equation via the extended generalized Riccati equation mapping method. Int. J. Adv. Math. Sci., 2013, 111-7

[21]

KunzEIntroduction to Commutative Algebra and Algebraic Geometry, 2013New YorkBirkhäuser/Springer

[22]

Lastra, A., Sendra, J.R., Sendra, J.: Hybrid trigonometric varieties. arXiv:1711.07728

[23]

Lawrence, J.D.: A Catalog of Special Plane Curves. Dover, New York, pp. 160–164, 169 (1972)

[24]

MainarE, PeñaJM. Optimal bases for a class of mixed spaces and their associated spline spaces. Comput. Math. Appl., 2010, 5941509-1523

[25]

MainarE, PeñaJM, Sánchez-ReyesJ. Shape preserving alternatives to the rational Bézier model. Comput. Aided Geom. Des., 2001, 18: 37-60

[26]

NaherH, AkbarFA, YildirimA. The extended generalized Riccati equation mapping method for the (1+1)-dimensional modified KdV equation. World Appl. Sci. J., 2013, 254543-553

[27]

PeñaJM. Shape preserving representations for trigonometric polynomial curves. Comput. Aided Geom. Des., 1997, 1415-11

[28]

PeñaJMShape Preserving Representations in Computer-Aided Geometric Design, 1999New YorkNova Science

[29]

PeternellM, GruberD, SendraJ. Conchoid surfaces of spheres. Comput. Aided Geom. Des., 2013, 30135-44

[30]

Pernell, M., Gotthart, L., Sendra, J., Sendra, J.R.: Offsets, conchoids and pedal surfaces. J. Geom. 106(2), 321–339 (2015)

[31]

PottmannH, WagnerMG. Helix splines as an example of affine Tchebycheffian splines. Adv. Comput. Math., 1994, 2: 123-142

[32]

RecioT, SendraJR. Real reparametrizations of real curves. J. Symb. Comput., 1997, 232–3241-254

[33]

RóthA. Control point based exact description of trigonometric/hyperbolic curves, surfaces and volumes. J. Comput. Appl. Math., 2015, 290: 74-91

[34]

RóthA, JuhászbI, SchichoJ, HoffmannM. A cyclic basis for closed curve and surface modeling. Comput. Aided Geom. Des., 2009, 265528-546

[35]

SakkalisT. The topological configuration of a real algebraic curve. Bull. Aust. Math. Soc., 1991, 43137-50

[36]

Sánchez-ReyesJ. Harmonic rational Bézier curves, p\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$p$$\end{document}-Bézier curves and trigonometric polynomials. Comput. Aided Geom. Des., 1998, 159909-923

[37]

Schicho, J.: Rational parametrization of real algebraic surfaces. In: Proceedings of the 1998 International Symposium on Symbolic and Algebraic Computation, pp. 302–308. ACM Press. https://doi.org/10.1145/281508.281655

[38]

Schicho, J.: Proper parametrization of surfaces with a rational pencil. In: Proceedings of the 2000 International Symposium on Symbolic and Algebraic Computation, pp. 292–300. ACM Press. https://doi.org/10.1145/345542.345657

[39]

ShenW, WangS. Geometric shapes of C-Bézier curves. Comput.-Aided Des., 2015, 58: 242-247

[40]

SendraJR, SevillaD. Radical parametrizations of algebraic curves by adjoint curves. J. Symb. Comput., 2011, 4691030-1038

[41]

SendraJR, SevillaD. First steps towards radical parametrization of algebraic surfaces. Comput. Aided Geom. Des., 2013, 304374-388

[42]

SendraJR, SevillaD, VillarinoC. Algebraic and algorithmic aspects of radical parametrizations. Comput. Aided Geom. Des., 2017, 55: 1-14

[43]

SendraJR, WinklerF, Pérez-DíazSRational Algebraic Curves, Algorithms and Computation in Mathematics, 2008BerlinSpringer22

[44]

ShafarevichIRBasic Algebraic Geometry, 2013HeidelbergSpringer2

[45]

WangG, LiY. Optimal properties of the uniform algebraic trigonometric B-splines. Comput. Aided Geom. Des., 2006, 232226-238

[46]

Willard, S.: General Topology. Dover Publications Inc, Mineola (2004)

[47]

ZhangJ, KrauseFL, ZhangH. Unifying C-curves and H-curves by extending the calculation to complex numbers. Comput. Aided Geom. Des., 2005, 22: 865-883

Funding

Universidad de Alcalá

RIGHTS & PERMISSIONS

The Author(s)

AI Summary AI Mindmap
PDF

160

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/