Application of the Theory of Tetragonal Curves to the Hierarchy of Extended Volterra Lattices

Minxin Jia , Xianguo Geng , Huan Liu , Jiao Wei

Communications in Mathematics and Statistics ›› 2023, Vol. 13 ›› Issue (3) : 687 -717.

PDF
Communications in Mathematics and Statistics ›› 2023, Vol. 13 ›› Issue (3) : 687 -717. DOI: 10.1007/s40304-022-00330-6
Article

Application of the Theory of Tetragonal Curves to the Hierarchy of Extended Volterra Lattices

Author information +
History +
PDF

Abstract

The theory of tetragonal curves is first applied to the study of discrete integrable systems. Based on the discrete Lenard equation, we derive a hierarchy of extended Volterra lattices associated with the discrete

4×4
matrix spectral problem. Resorting to the characteristic polynomial of the Lax matrix for the hierarchy of extended Volterra lattices, we introduce a tetragonal curve, a Baker–Akhiezer function and meromorphic functions on it. We study algebro-geometric properties of the tetragonal curve and asymptotic behaviors of the Baker–Akhiezer function and meromorphic functions near the origin and two infinite points. The straightening out of various flows is precisely given by utilizing the Abel map and the meromorphic differential. We finally obtain Riemann theta function solutions of the entire hierarchy of extended Volterra lattices.

Keywords

Extended Volterra lattices / Tetragonal curve / Riemann theta function solutions / Mathematical Sciences / Pure Mathematics / Mathematical Physics

Cite this article

Download citation ▾
Minxin Jia, Xianguo Geng, Huan Liu, Jiao Wei. Application of the Theory of Tetragonal Curves to the Hierarchy of Extended Volterra Lattices. Communications in Mathematics and Statistics, 2023, 13(3): 687-717 DOI:10.1007/s40304-022-00330-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

AblowitzMJ, SegurHSolitons and the Inverse Scattering Transform, 1981PhiladelphiaSIAM

[2]

AdlerVE, SvinolupovSI, YamilovRI. Multi-component Volterra and Toda type integrable equations. Phys. Lett. A, 1999, 2541–224-36

[3]

BelokolosED, BobenkoAI, Enol’skiiVZ, ItsAR, MatveevVBAlgebro-Geometric Approach to Nonlinear Integrable Equations, 1994BerlinSpringer

[4]

BogoyavlenskyOI. Some constructions of integrable dynamical systems. Izv. Akad. Nauk SSSR Ser. Mat., 1987, 514737-766

[5]

BöhningC, von BothmerH-CG, CasnatiG. Birational properties of some moduli spaces related to tetragonal curves of genus 7. Int. Math. Res. Not. IMRN, 2012, 2012225219-5245

[6]

BrawnerJN. Tetragonal curves, scrolls and K3 surfaces. Trans. Am. Math. Soc., 1997, 34983075-3091

[7]

BullaW, GesztesyF, HoldenH, TeschlG. Algebro-geometric quasi-periodic finite-gap solutions of the Toda and Kac-van Moerbeke hierarchies. Mem. Am. Math. Soc., 1998, 1356411-79

[8]

DateE, TanakaS. Periodic multi-soliton solutions of Korteweg-de Vries equation and Toda lattice. Progr. Theoret. Phys. Suppl., 1976, 59: 107-125

[9]

DeconinckB, van HoeijM. Computing Riemann matrices of algebraic curves. Phys. D, 2001, 152–153: 28-46

[10]

DicksonR, GesztesyF, UnterkoflerK. A new approach to the Boussinesq hierarchy. Math. Nachr., 1999, 198: 51-108

[11]

DicksonR, GesztesyF, UnterkoflerK. Algebro-geometric solutions of the Boussinesq hierarchy. Rev. Math. Phys., 1999, 117823-879

[12]

DubrovinBA. Inverse problem for periodic finite-zoned potentials in the theory of scattering. Funct. Anal. Appl., 1975, 9161-62

[13]

EnglandM, EilbeckJC. Abelian functions associated with a cyclic tetragonal curve of genus six. J. Phys. A, 2009, 429095210

[14]

FarkasHM, KraIRiemann Surfaces, 19922New YorkSpringer

[15]

GengXG, CaoCW. Decomposition of the (2+1)\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$(2 + 1)$$\end{document}-dimensional Gardner equation and its quasi-periodic solutions. Nonlinearity, 2001, 1461433-1452

[16]

GengXG, DaiHH, ZhuJY. Decomposition of the discrete Ablowitz-Ladik hierarchy. Stud. Appl. Math., 2007, 1183281-312

[17]

GengXG, WuLH, HeGL. Algebro-geometric constructions of the modified Boussinesq flows and quasi-periodic solutions. Phys. D, 2011, 240161262-1288

[18]

GengXG, WuLH, HeGL. Quasi-periodic solutions of the Kaup-Kupershmidt hierarchy. J. Nonlinear Sci., 2013, 234527-555

[19]

GengXG, ZhaiYY, DaiHH. Algebro-geometric solutions of the coupled modified Korteweg-de Vries hierarchy. Adv. Math., 2014, 263: 123-153

[20]

GengXG, ZengX. Quasi-periodic solutions of the Belov-Chaltikian lattice hierarchy. Rev. Math. Phys., 2017, 2981750025

[21]

GengXG, LiuH. The nonlinear steepest descent method to long-time asymptotics of the coupled nonlinear Schrödinger equation. J. Nonlinear Sci., 2018, 282739-763

[22]

GengXG, ZengX, WeiJ. The application of the theory of trigonal curves to the discrete coupled nonlinear Schrödigner hierarchy. Ann. Henri Poincaré, 2019, 2082585-2621

[23]

GengXG, LiRM, XueB. A vector general nonlinear Schrödinger equation with (m+n\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$m+n$$\end{document}) components. J. Nonlinear Sci., 2020, 303991-1013

[24]

GengXG, WangKD, ChenMM. Long-time asymptotics for the spin-1 Gross-Pitaevskii equation. Commun. Math. Phys., 2021, 3821585-611

[25]

GesztesyF, RatnaseelanR. An alternative approach to algebro-geometric solutions of the AKNS hierarchy. Rev. Math. Phys., 1998, 103345-391

[26]

GesztesyF, HoldenHSoliton Equations and their Algebro-Geometric Solutions II, 2003CambridgeCambridge University Press

[27]

GriffithsP, HarrisJPrinciples of Algebraic Geometry, 1994New YorkWiley

[28]

HietarintaJ, JoshiN, NijhoffFWDiscrete Systems and Integrability, 2016CambridgeCambridge University Press

[29]

ItsAR, MatveevVB. Schrödinger operators with finite-gap spectrum and n-soliton solutions of the Korteweg-de Vries equation. Theor. Math. Phys., 1975, 231343-355

[30]

KricheverIM. Integration of nonlinear equations by the methods of algebraic geometry. Funct. Anal. Appl., 1977, 11112-26

[31]

LaxPD. Periodic solutions of the KdV equation. Commun. Pure Appl. Math., 1975, 281141-188

[32]

LiRM, GengXG. On a vector long wave-short wave-type model. Stud. Appl. Math., 2020, 1442164-184

[33]

LiRM, GengXG. Rogue periodic waves of the sine-Gordon equation. Appl. Math. Lett., 2020, 102106147

[34]

MaSH. Rationality of some tetragonal loci. Algebraic Geom., 2014, 13271-289

[35]

MaWX. Trigonal curves and algebro-geometric solutions to soliton hierarchy I. Proc. R. Soc. A, 2017, 473220320170232

[36]

MaWX. Trigonal curves and algebro-geometric solutions to soliton hierarchy II. Proc. R. Soc. A, 2017, 473220320170233

[37]

MaWX. N\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$N$$\end{document}-soliton solutions and Hirota conditions in (2+1)\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$(2+1)$$\end{document}-dimensions. Opt. Quant. Electron., 2020, 5212511

[38]

MaWX. N\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$N$$\end{document}-soliton solutions and the Hirota condition of a (2+1)\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$(2+1)$$\end{document}-dimensional combined equation. Math. Comput. Simul., 2021, 190: 270-279

[39]

MaWX. N\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$N$$\end{document}-soliton solutions of a combined pKP-BKP equation. J. Geom. Phys., 2021, 165104191

[40]

MaWX, YongXL, X. Soliton solutions to the B-type Kadomtsev-Petviashvili equation under general dispersion relations. Wave Motion, 2021, 103102719

[41]

MaYC, AblowitzMJ. The periodic cubic Schrödinger equation. Stud. Appl. Math., 1981, 652113-158

[42]

MatveevVB. 30 years of finite-gap integration theory. Phil. Trans. R. Soc. A, 2008, 3661867837-875

[43]

McKeanHP, van MoerbekeP. The spectrum of Hill’s equation. Invent. Math., 1975, 303217-274

[44]

MillerPD, ErcolaniNM, KricheverIM, LevermoreCD. Finite genus solutions to the Ablowitz-Ladik equations. Comm. Pure Appl. Math., 1995, 48121369-1440

[45]

MirandaRAlgebraic Curves and Riemann Surfaces, 1995ProvidenceAmerican Mathematical Society

[46]

NaritaK. Soliton solution to extended Volterra equation. J. Phys. Soc. Jpn, 1982, 5151682-1685

[47]

NovikovSP. A periodic problem for the Korteweg-de Vries equation. Funct. Anal. Appl., 1975, 83236-246

[48]

NovikovSP, ManakovSV, PitaevskiiLP, ZakharovVETheory of Solitons, the Inverse Scattering Methods, 1984New YorkConsultants Bureau

[49]

PreviatoE. Hyperelliptic quasi-periodic and soliton solutions of the nonlinear Schrödinger equation. Duke. Math. J, 1985, 522329-377

[50]

SmiraniM, AkricheM. Real elliptic surfaces with double section and real tetragonal curves. Bull. Belg. Math. Soc. Simon Stevin, 2012, 193445-460

[51]

SurisYB. On the r\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$r$$\end{document}-matrix interpretation of Bogoyavlensky lattices. Phys. Lett. A, 1994, 1883256-262

[52]

SurisYB. Integrable discretizations of the Bogoyavlensky lattices. J. Math. Phys., 1996, 3783982-3996

[53]

SurisYBThe Problem of Integrable Discretization: Hamiltonian Approach, 2003BaselBirkhäuser Verlag

[54]

WangJP. Recursion operator of the Narita-Itoh-Bogoyavlensky lattice. Stud. Appl. Math., 2012, 1293309-327

[55]

WeiJ, GengXG, ZengX. The Riemann theta function solutions for the hierarchy of Bogoyavlensky lattices. Trans. Am. Math. Soc., 2019, 37121483-1507

[56]

ZhangHW, TuGZ, OevelW, FuchssteinerB. Symmetries, conserved quantities, and hierarchies for some lattice systems with soliton structure. J. Math. Phys., 1991, 3271908-1918

Funding

National Natural Science Foundation of China(11871440)

RIGHTS & PERMISSIONS

School of Mathematical Sciences, University of Science and Technology of China and Springer-Verlag GmbH Germany, part of Springer Nature

AI Summary AI Mindmap
PDF

227

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/