A Hierarchical Bayesian Approach for Finite Mixture of Mode Regression Model Using Skew-Normal Distribution

Xin Zeng , Min Wang , Yuanyuan Ju , Liucang Wu

Communications in Mathematics and Statistics ›› : 1 -22.

PDF
Communications in Mathematics and Statistics ›› : 1 -22. DOI: 10.1007/s40304-022-00320-8
Article

A Hierarchical Bayesian Approach for Finite Mixture of Mode Regression Model Using Skew-Normal Distribution

Author information +
History +
PDF

Abstract

Many data that exhibit asymmetrical behavior can be well modeled with skew-normal random errors. Moreover, data that arise from a heterogeneous population can be efficiently analyzed by a finite mixture of regression models. These observations motivate us to propose a novel finite mixture of mode regression model based on a mixture of the skew-normal distributions to explore asymmetrical data from several subpopulations. Thanks to the stochastic representation of the skew-normal distribution, we construct a Bayesian hierarchical modeling framework and then develop an efficient Markov chain Monte Carlo sampling algorithm to generate posterior samples for obtaining the Bayesian estimates of the unknown parameters and their corresponding standard errors. Simulation studies and a real-data example are presented to illustrate the performance of the proposed Bayesian methodology.

Keywords

Bayesian analysis / Mode regression / Heterogeneous data / Skew-normal distribution / Markov chain Monte Carlo

Cite this article

Download citation ▾
Xin Zeng,Min Wang,Yuanyuan Ju,Liucang Wu. A Hierarchical Bayesian Approach for Finite Mixture of Mode Regression Model Using Skew-Normal Distribution. Communications in Mathematics and Statistics 1-22 DOI:10.1007/s40304-022-00320-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Akaike H. Information theory and an extension of the maximum likelihood principle. Int. Symposium Inform. Theory. 1973, 1 610-624

[2]

Azzalini A. A class of distributions which includes the normal ones. Scand. J. Stat.. 1985, 12 2 171-178

[3]

Azzalini A, Capitanio A. The skew-normal and related families. 2013 Cambridge: Cambridge University Press

[4]

Bouguila N, Elguebaly T. A fully Bayesian model based on reversible jump MCMC and finite Beta mixtures for clustering. Expert Syst Appl. 2012, 39 5 5946-5959

[5]

Cook RD, Weisberg S. An introduction to regression graphics. 1994 New York: John Wiley and Sons

[6]

Davies PL, Kovac A. Densities, spectral densities and modality. Ann. Statist.. 2004, 32 3 1093-1136

[7]

Dellaportas P, Papageorgiou I. Multivariate mixtures of normals with unknown number of components. Stat. Comput.. 2006, 16 1 57-68

[8]

Gelman A. Inference and monitoring convergence in Markov chain monte Carlo in practice. 1996 London: Chapman and Hall

[9]

Goldfeld SM, Quandt RE. A markov model for switching regressions. Econometrics. 1973, 1 1 3-15

[10]

Gruet MA, Philippe A, Robert CP. MCMC control spreadsheets for exponential mixture estimation. J. Comput. Graph. Statist.. 1999, 8 2 298-317

[11]

Henning C. Identifiability of models for Clusterwise linear regression. J. Classification. 2000, 17 2 273-296

[12]

Khalili A, Chen J. Variable selection in finite mixture of regression models. J. Amer. Statist. Assoc.. 2007, 102 479 1025-1038

[13]

Li J, Ray S, Lindsay BG. A nonparametric statistical approach to clustering via mode identification. J. Mach. Learn. Res.. 2007, 8 59 1687-1723

[14]

Li HQ, Wu LC, Yi JY. A skew-normal mixture of joint location, scale and skewness models. Appl. Math. J. Chinese Univ. Ser. B. 2016, 31 3 283-295

[15]

Li HQ, Wu LC, Ma T. Variable selection in joint location, scale and skew-ness models of the skew-normal distribution. J. Syst. Sci. Complex.. 2017, 30 3 694-709

[16]

Lin TI, Lee JC, Yen SY. Finite mixture modelling using the skew normal distribution. Statist. Sinica. 2007, 17 3 909-927

[17]

Maruotti A, Bulla J, Lagona F, Picone M, Martella F. Dynamic mixtures of factor analyzers to characterize multivariate air pollutant exposures. Ann. Appl. Stat.. 2017, 11 3 1617-1648

[18]

McLachlan G, Peel D. Finite mixture models. 2000 New York: Wiley

[19]

Meligkotsidou L. Bayesian multivariate Poisson mixtures with an unknown number of components. Stat. Comput.. 2007, 17 2 93-107

[20]

Muller DW, Sawitzki G. Excess mass estimates and tests for multimodality. J. Amer. Statist. Assoc.. 1991, 86 415 738-746

[21]

Richardson S, Green PJ. On Bayesian analysis of mixtures with an unknown number of components (with discussion). J. R. Stat. Soc. Ser. B.. 1997, 59 4 731-792

[22]

Schwarz G. Estimating the dimension of a model. Ann. Statist.. 1978, 6 2 461-464

[23]

Tang AM, Tang NS. Semiparametric Bayesian inference on skew-normal joint modeling of multivariate longitudinal and survival data. Stat. Med.. 2015, 34 5 824-843

[24]

Tang NS, Li DW, Tang AM. Semiparametric Bayesian inference on generalized linear measurement error models. Statist. Papers. 2017, 58 4 1091-1113

[25]

Tang NS, Yan XD, Zhao XQ. Penalized generalized empirical likelihood with a diverging number of general estimating equations for censored data. Ann. Statist.. 2020, 48 1 607-627

[26]

Titterington DM, Smith AF, Makov UE. Statistical analysis of finite mixture distributions. 1985 New York: Wiley

[27]

Viallefont V, Richardson S, Green PJ. Bayesian analysis of Poisson mixtures. J. Nonparametr. Stat.. 2002, 14 181-202

[28]

Wang ZQ, Tang NS. Bayesian quantile regression with mixed discrete and nonignorable missing covariates. Bayesian Anal.. 2020, 15 2 579-604

[29]

Wu LC, Zhang ZZ, Xu DK. Variable selection in joint location and scale models of the skew-normal distribution. J. Stat. Comput. Simul.. 2013, 83 7 1266-1278

[30]

Wu LC. Variable selection in joint location and scale models of the skew-t-normal distribution. Comm. Statist. Simulation Comput.. 2014, 43 3 615-630

[31]

Yao WX, Lindsay BG. Bayesian mixture labeling by highest posterior density. J. Amer. Statist. Assoc.. 2009, 104 486 758-767

[32]

Yao WX, Li LH. A new regression model: modal linear regression. Scand. J. Stat.. 2014, 41 3 656-671

AI Summary AI Mindmap
PDF

156

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/