Existence and Convergence of Solutions for Nonlinear Elliptic Systems on Graphs

Jinyan Xu , Liang Zhao

Communications in Mathematics and Statistics ›› 2024, Vol. 12 ›› Issue (4) : 735 -754.

PDF
Communications in Mathematics and Statistics ›› 2024, Vol. 12 ›› Issue (4) : 735 -754. DOI: 10.1007/s40304-022-00318-2
Article

Existence and Convergence of Solutions for Nonlinear Elliptic Systems on Graphs

Author information +
History +
PDF

Abstract

We consider a kind of nonlinear systems on a locally finite graph $G=(V,E)$. We prove via the mountain pass theorem that this kind of systems has a nontrivial ground state solution which depends on the parameter $\lambda $ with some suitable assumptions on the potentials. Moreover, we pay attention to the concentration behavior of these solutions and prove that as $\lambda \rightarrow \infty $, these solutions converge to a ground state solution of a corresponding Dirichlet problem. Finally, we also provide some numerical experiments to illustrate our results.

Keywords

Nonlinear elliptic system / Locally finite graph / Ground state solution

Cite this article

Download citation ▾
Jinyan Xu, Liang Zhao. Existence and Convergence of Solutions for Nonlinear Elliptic Systems on Graphs. Communications in Mathematics and Statistics, 2024, 12(4): 735-754 DOI:10.1007/s40304-022-00318-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Alves CO, de Morais Filho DC, Souto MAS. On systems of elliptic equations involving subcritical or critical sobolev exponents. Nonlinear Anal., 2000, 42(5): 771-87

[2]

Alves CO. Local mountain pass for a class of elliptic system. J. Math. Anal. Appl., 2007, 335(1): 135-150

[3]

Bartsch T, Tang ZW. Multi-bump solutions of nonlinear Schrödinger equations with steep potential well and indefinite potential. Discrete Contin. Dyn. Syst., 2012, 33(1): 7-26

[4]

Bartsch T, Wang ZQ. Existence and multiplicity results for some superlinear elliptic problems on $\mathbb{R} ^{N}$. Commun. Partial Differ. Equ., 1995, 20: 1725-1741

[5]

Bartsch T, Wang ZQ. Multiple positive solutions for a nonlinear Schrödinger equation. Z. Angew. Math. Phys., 2000, 51(3): 366-384

[6]

Bartsch T, Willem M. Infinitely many nonradial solutions of a Euclidean scalar field equation. J. Funct. Anal., 1993, 117(2): 447-460

[7]

Chow S-N, Li WC, Zhou HM. Entropy dissipation of Fokker-Planck equations on graphs. Discrete Contin. Dyn. Syst., 2018, 38: 4929-4950

[8]

Chow S-N, Li WC, Zhou HM. A discrete Schrödinger equation via optimal transport on graphs. J. Funct. Anal., 2019, 276: 2440-2469

[9]

Costa DG. On a class of elliptic systems in $\mathbb{R} ^{N}$. Electron. J. Differ. Eq., 1994, 7: 1-14

[10]

Figueiredo DGD. Nonlinear elliptic systems. An. Acad. Bras. Cienc., 2000, 72(4): 453-469

[11]

Figueiredo GM, Furtado MF. Multiple positive solutions for a quasilinear system of Schrödinger equations. Nonlinear Differ. Equ. Appl., 2008, 15: 309-333

[12]

Furtado MF, Maia LA, Silva EAB. Solutions for a resonant elliptic system with coupling in $\mathbb{R} ^{N}$. Commun. Partial Differ. Equ., 2002, 27: 1515-1536

[13]

Furtado MF, Silva EAB, Xavier MS. Multiplicity and concentration of solutions for elliptic systems with vanishing potentials. J. Differ. Equ., 2010, 249(10): 2377-2396

[14]

Grigor’yan A, Lin Y, Yang YY. Kazdan-Warner equation on graph. Calc. Var. Partial Differ. Equ., 2016, 55(4): 13

[15]

Grigor’yan A, Lin Y, Yang YY. Yamabe type equations on graphs. J. Differ. Equ., 2016, 261(9): 4924-4943

[16]

Grigor’yan A, Lin Y, Yang YY. Existence of positive solutions to some nonlinear equations on locally finite graphs. Sci. China Math., 2017, 60(7): 1311-1324

[17]

Han XL, Shao MQ, Zhao L. Existence and convergence of solutions for nonlinear biharmonic equations on graphs. J. Differ. Equ., 2020, 268(7): 3936-3961

[18]

Horn P, Lin Y, Liu S, Yau ST. Volume doubling, Poincaré inequality and Gaussian heat kernel estimate for non-negatively curved graphs. J. Reine Angew. Math., 2019, 757: 89-130

[19]

Huang XP. On uniqueness class for a heat equation on graphs. J. Math. Anal. Appl., 2012, 393: 377-388

[20]

Kristály A. Existence of nonzero weak solutions for a class of elliptic variational inclusions systems in $\mathbb{R} ^{N}$. Nonlinear Anal., 2006, 65(8): 1578-1594

[21]

Li Y. Remarks on a semilinear elliptic equation on $\mathbb{R} ^{N}$. J. Differ. Equ., 1988, 74(1): 34-49

[22]

Lin Y, Wu YT. The existence and nonexistence of global solutions for a semilinear heat equation on graphs. Calc. Var. Partial Differ. Equ., 2017, 56(4): 22

[23]

Lin Y, Wu YT. Blow-up problems for nonlinear parabolic equations on locally finite graphs. Acta Math. Sci., 2018, 38B(3): 843-856

[24]

Liu HD, Liu ZL. Ground states of a nonlinear Schrödinger system with nonconstant potentials. Sci. China Math., 2015, 58(2): 257-278

[25]

DF, Liu Q. Multiplicity of solutions for a class of quasilinear Schrödinger Systems in $\mathbb{R} ^{N}$. Comput. Math. Appl., 2014, 66(12): 2532-2544

[26]

Man S. On a class of nonlinear Schrödinger equation on finite graphs. B. Aust. Math. Soc., 2020, 101(3): 1-11

[27]

Ou ZQ, Tang CL. Existence and multiplicity results for some elliptic systems at resonance. Nonlinear Anal., 2009, 71: 2660-2666

[28]

Rabinowitz PH. On a class of nonlinear Schrödinger equations. Z. Angew. Math. Phys., 1992, 43(2): 270-291

[29]

Sato Y, Tanaka K. Sign-changing multi-bump solutions for nonlinear Schrödinger equations with steep potential wells. Trans. Am. Math. Soc., 2009, 361(12): 6205-6253

[30]

Zhang J, Zhang Z. Existence results for some nonlinear elliptic systems. Nonlinear Anal., 2009, 71: 2840-2846

[31]

Zhang N, Zhao L. Convergence of ground state solutions for nonlinear Schrödinger equations on graphs. Sci. China Math., 2018, 61(8): 1481-1494

AI Summary AI Mindmap
PDF

239

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/