Quantum N-toroidal Algebras and Extended Quantized GIM Algebras of N-fold Affinization

Yun Gao , Naihuan Jing , Limeng Xia , Honglian Zhang

Communications in Mathematics and Statistics ›› : 1 -39.

PDF
Communications in Mathematics and Statistics ›› :1 -39. DOI: 10.1007/s40304-022-00316-4
Article

Quantum N-toroidal Algebras and Extended Quantized GIM Algebras of N-fold Affinization

Author information +
History +
PDF

Abstract

We introduce the notion of quantum N-toroidal algebras as natural generalization of the quantum toroidal algebras as well as extended quantized GIM algebras of N-fold affinization. We show that the quantum N-toroidal algebras are quotients of the extended quantized GIM algebras of N-fold affinization, which generalizes a well-known result of Berman and Moody for Lie algebras.

Keywords

Generalized intersection matrix / Quantized GIM algebra / Quantum 2-toroidal algebra / Quantum N-toroidal algebra

Cite this article

Download citation ▾
Yun Gao, Naihuan Jing, Limeng Xia, Honglian Zhang. Quantum N-toroidal Algebras and Extended Quantized GIM Algebras of N-fold Affinization. Communications in Mathematics and Statistics 1-39 DOI:10.1007/s40304-022-00316-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Allison B, Berman S, Faulkner J, Pianzola A. Multiloop realization of extended affine Lie algebras and Lie tori. Trans. Am. Math. Soc.. 2009, 361 4807-4842

[2]

Berman S, Moody RV. Lie algebras graded by finite root systems and the intersection matrix algebras of Slowdowy. Invent. Math.. 1992, 108 323-347

[3]

Feigin B, Jimbo M, Miwa T, Mukhin E. Branching rules for quantum toroidal $\mathfrak{gl}(n)$. Adv. Math.. 2016, 300 229-274

[4]

Feigin B, Jimbo M, Miwa T, Mukhin E. Representations of quantum toroidal $\mathfrak{gl}_n$. J. Algebra. 2013, 380 78-108

[5]

Frenkel IB, Jing N. Vertex representations of quantum affine algebras. Proc. Nat’l. Acad. Sci. USA. 1998, 85 9373-9377

[6]

Frenkel IB, Jing N, Wang W. Quantum vertex representations via finite groups and the McKay correspondence. Commun. Math. Phys.. 2000, 211 365-393

[7]

Gao Y. Involutive Lie algebras graded by finite root systems and compact forms of IM algebras. Math. Z.. 1996, 223 651-672

[8]

Gao Y, Hu N, Xia L. Quantized GIM algebras and their images in quantized Kac-Moody algebras. Algebra Represent. Theory. 2021, 24 565-584

[9]

Gao Y, Jing N. $U_q(\mathfrak{gl}_N)$ action on $\mathfrak{gl}_N$-modules and quantum toroidal algebras. J. Algebra. 2004, 273 320-343

[10]

Gautam S, Toledano-Laredo V. Yangians and quantum loop algebras. Sel. Math. (N.S.). 2013, 19 271-336

[11]

Ginzburg V, Kapranov M, Vasserot E. Langlands reciprocty for algebric surfaces. Math. Res. Lett.. 1995, 2 147-160

[12]

Guay N, Ma X. From quantum loop algebras to Yangians. J. Lond. Math. Soc. (2). 2012, 86 683-700

[13]

Guay N, Nakajima H, Wendlandt C. Coproduct for the Yangian of an affine Kac-Moody algebra. Adv. Math.. 2018, 338 865-911

[14]

Hernandez D. Drinfeld coproduct, quantum fusion tensor category and applications. Proc. Lond. Math. Soc.. 2007, 95 567-608

[15]

Hernandez D. Quantum toroidal algebras and their representations. Sel. Math. (N.S.). 2009, 14 701-725

[16]

Jing N. On Drinfel’d realization of quantum affine algebras. Ohio State Univ. Math. Res. Inst. Publ. de Gruyter, Berlin. 1998, 7 195-206

[17]

Jing N. Quantum Kac-Moody algebras and vertex representations. Lett. Math. Phys.. 1998, 4 261-271

[18]

Jing, N., Zhang, H.: Hopf algebraic structure of quantum toroidal algebra. arXiv:1604.05416

[19]

Jing N, Zhang H. Two-parameter twisted quantum affine algebras. J. Math. Phys.. 2016, 57

[20]

Kolb S. Quantum symmetric Kac-Moody pairs. Adv. Math.. 2014, 267 395-469

[21]

Lv R, Tan Y. On quantized generalized intersection matrix algebras associated to 2-fold affinization of Cartan matrices. J. Algebra Appl.. 2013, 12 125-141

[22]

Miki K. Toroidal and level 0 $U_q^{\prime }(\widehat{sl}_{n+1})$ actions on $U_q(\widehat{gl}_{n+1})$-modules. J. Math. Phys.. 1999, 40 3191-3210

[23]

Miki K. Toroidal braid group action and an automorphism of toroidal algebra $U_q(sl_{n+1}, tor)$. Lett. Math. Phys.. 1999, 47 365-378

[24]

Miki K. Representations of quantum toroidal algebra $U_q(sl_{n+1}, tor)(n>2)$. J. Math. Phys.. 2000, 41 7079-7098

[25]

Miki K. Quantum toroidal algebra $U_q(sl_2, tor)$ and R matrices. J. Math. Phys.. 2001, 42 2293-2308

[26]

Miki K. Some quotient algebras arising from the quantum toroidal algebra $U_q(sl_2(C_{\gamma }))$. Osaka J. Math.. 2005, 42 885-929

[27]

Miki K. Some quotient algebras arising from the quantum toroidal algebra $U_q(sl_{n+1}(C_{\gamma }))$ $(n \ge 2)$. Osaka J. Math.. 2006, 43 895-922

[28]

Nakajima H. Quiver varieties and quantum affine algebras. Trans. Sugaku. 2000, 52 337-359

[29]

Nakajima H. Quiver varieties and quantum affine algebras. Su-hak. 2006, 19 53-78

[30]

Nakajima H. Quiver varieties and finite-dimensional representations of quantum affine algebras. J. Am. Math. Soc.. 2001, 14 145-238

[31]

Neher E. Lie algebras graded by 3-graded root systems and Jordan pairs covered by grids. Am. J. Math.. 1996, 118 439-491

[32]

Rao S, Moody R. Vertex representations for $N$-toroidal Lie algebras and a generalization of the Virasoro algebra. Commun. Math. Phys.. 1994, 159 239-264

[33]

Saito K. Extended affine root systems. I. Coxeter transformations. Publ. Res. Inst. Math. Sci.. 1985, 21 75-179

[34]

Saito Y. Quantum toroidal algebras and their vertex representations. Publ. RIMS. Kyoto Univ.. 1998, 34 155-177

[35]

Saito Y, Takemura K, Uglov D. Toroidal actions on level1modules of $U_q({\hat{sl}}_n)$. Transform. Groups. 1998, 3 75-102

[36]

Slodowy, P.: Beyond Kac-Moody algebras, and inside. In: Lie Algebras and Related Topics (Windsor, Ont., 1984), pp. 361–371, CMS Conference Proceedings, vol. 5. American Mathematical Society, Providence, RI (1986)

[37]

Tan Y. Quantized GIM algebras and their Lusztig symmetries. J. Algebra. 2005, 289 214-276

[38]

Tan Y. Drinfeld–Jimbo coproduct of quantized GIM Lie algebras. J. Algebra. 2007, 313 617-641

[39]

Varagnolo M, Vasserot E. Schur duality in the toroidal setting. Commun. Math. Phys.. 1996, 182 469-484

[40]

Varagnolo M, Vasserot E. Double-loop algebras and the Fock space. Invent. Math.. 1998, 133 133-159

[41]

Xia L. Finite dimensional modules over quantum toroidal algebras. Front. Math. China. 2020, 15 593-600

Funding

National Natural Science Foundation of China(11931009)

Natural Sciences and Engineering Research Council of Canada(11531004)

Simons Foundation(523868)

National Natural Science Foundation of China(11871249)

PDF

289

Accesses

0

Citation

Detail

Sections
Recommended

/