Quantum N-toroidal Algebras and Extended Quantized GIM Algebras of N-fold Affinization

Yun Gao , Naihuan Jing , Limeng Xia , Honglian Zhang

Communications in Mathematics and Statistics ›› : 1 -39.

PDF
Communications in Mathematics and Statistics ›› : 1 -39. DOI: 10.1007/s40304-022-00316-4
Article

Quantum N-toroidal Algebras and Extended Quantized GIM Algebras of N-fold Affinization

Author information +
History +
PDF

Abstract

We introduce the notion of quantum N-toroidal algebras as natural generalization of the quantum toroidal algebras as well as extended quantized GIM algebras of N-fold affinization. We show that the quantum N-toroidal algebras are quotients of the extended quantized GIM algebras of N-fold affinization, which generalizes a well-known result of Berman and Moody for Lie algebras.

Keywords

Generalized intersection matrix / Quantized GIM algebra / Quantum 2-toroidal algebra / Quantum N-toroidal algebra

Cite this article

Download citation ▾
Yun Gao, Naihuan Jing, Limeng Xia, Honglian Zhang. Quantum N-toroidal Algebras and Extended Quantized GIM Algebras of N-fold Affinization. Communications in Mathematics and Statistics 1-39 DOI:10.1007/s40304-022-00316-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Allison B, Berman S, Faulkner J, Pianzola A. Multiloop realization of extended affine Lie algebras and Lie tori. Trans. Am. Math. Soc.. 2009, 361 4807-4842

[2]

Berman S, Moody RV. Lie algebras graded by finite root systems and the intersection matrix algebras of Slowdowy. Invent. Math.. 1992, 108 323-347

[3]

Feigin B, Jimbo M, Miwa T, Mukhin E. Branching rules for quantum toroidal $\mathfrak{gl}(n)$. Adv. Math.. 2016, 300 229-274

[4]

Feigin B, Jimbo M, Miwa T, Mukhin E. Representations of quantum toroidal $\mathfrak{gl}_n$. J. Algebra. 2013, 380 78-108

[5]

Frenkel IB, Jing N. Vertex representations of quantum affine algebras. Proc. Nat’l. Acad. Sci. USA. 1998, 85 9373-9377

[6]

Frenkel IB, Jing N, Wang W. Quantum vertex representations via finite groups and the McKay correspondence. Commun. Math. Phys.. 2000, 211 365-393

[7]

Gao Y. Involutive Lie algebras graded by finite root systems and compact forms of IM algebras. Math. Z.. 1996, 223 651-672

[8]

Gao Y, Hu N, Xia L. Quantized GIM algebras and their images in quantized Kac-Moody algebras. Algebra Represent. Theory. 2021, 24 565-584

[9]

Gao Y, Jing N. $U_q(\mathfrak{gl}_N)$ action on $\mathfrak{gl}_N$-modules and quantum toroidal algebras. J. Algebra. 2004, 273 320-343

[10]

Gautam S, Toledano-Laredo V. Yangians and quantum loop algebras. Sel. Math. (N.S.). 2013, 19 271-336

[11]

Ginzburg V, Kapranov M, Vasserot E. Langlands reciprocty for algebric surfaces. Math. Res. Lett.. 1995, 2 147-160

[12]

Guay N, Ma X. From quantum loop algebras to Yangians. J. Lond. Math. Soc. (2). 2012, 86 683-700

[13]

Guay N, Nakajima H, Wendlandt C. Coproduct for the Yangian of an affine Kac-Moody algebra. Adv. Math.. 2018, 338 865-911

[14]

Hernandez D. Drinfeld coproduct, quantum fusion tensor category and applications. Proc. Lond. Math. Soc.. 2007, 95 567-608

[15]

Hernandez D. Quantum toroidal algebras and their representations. Sel. Math. (N.S.). 2009, 14 701-725

[16]

Jing N. On Drinfel’d realization of quantum affine algebras. Ohio State Univ. Math. Res. Inst. Publ. de Gruyter, Berlin. 1998, 7 195-206

[17]

Jing N. Quantum Kac-Moody algebras and vertex representations. Lett. Math. Phys.. 1998, 4 261-271

[18]

Jing, N., Zhang, H.: Hopf algebraic structure of quantum toroidal algebra. arXiv:1604.05416

[19]

Jing N, Zhang H. Two-parameter twisted quantum affine algebras. J. Math. Phys.. 2016, 57

[20]

Kolb S. Quantum symmetric Kac-Moody pairs. Adv. Math.. 2014, 267 395-469

[21]

Lv R, Tan Y. On quantized generalized intersection matrix algebras associated to 2-fold affinization of Cartan matrices. J. Algebra Appl.. 2013, 12 125-141

[22]

Miki K. Toroidal and level 0 $U_q^{\prime }(\widehat{sl}_{n+1})$ actions on $U_q(\widehat{gl}_{n+1})$-modules. J. Math. Phys.. 1999, 40 3191-3210

[23]

Miki K. Toroidal braid group action and an automorphism of toroidal algebra $U_q(sl_{n+1}, tor)$. Lett. Math. Phys.. 1999, 47 365-378

[24]

Miki K. Representations of quantum toroidal algebra $U_q(sl_{n+1}, tor)(n>2)$. J. Math. Phys.. 2000, 41 7079-7098

[25]

Miki K. Quantum toroidal algebra $U_q(sl_2, tor)$ and R matrices. J. Math. Phys.. 2001, 42 2293-2308

[26]

Miki K. Some quotient algebras arising from the quantum toroidal algebra $U_q(sl_2(C_{\gamma }))$. Osaka J. Math.. 2005, 42 885-929

[27]

Miki K. Some quotient algebras arising from the quantum toroidal algebra $U_q(sl_{n+1}(C_{\gamma }))$ $(n \ge 2)$. Osaka J. Math.. 2006, 43 895-922

[28]

Nakajima H. Quiver varieties and quantum affine algebras. Trans. Sugaku. 2000, 52 337-359

[29]

Nakajima H. Quiver varieties and quantum affine algebras. Su-hak. 2006, 19 53-78

[30]

Nakajima H. Quiver varieties and finite-dimensional representations of quantum affine algebras. J. Am. Math. Soc.. 2001, 14 145-238

[31]

Neher E. Lie algebras graded by 3-graded root systems and Jordan pairs covered by grids. Am. J. Math.. 1996, 118 439-491

[32]

Rao S, Moody R. Vertex representations for $N$-toroidal Lie algebras and a generalization of the Virasoro algebra. Commun. Math. Phys.. 1994, 159 239-264

[33]

Saito K. Extended affine root systems. I. Coxeter transformations. Publ. Res. Inst. Math. Sci.. 1985, 21 75-179

[34]

Saito Y. Quantum toroidal algebras and their vertex representations. Publ. RIMS. Kyoto Univ.. 1998, 34 155-177

[35]

Saito Y, Takemura K, Uglov D. Toroidal actions on level1modules of $U_q({\hat{sl}}_n)$. Transform. Groups. 1998, 3 75-102

[36]

Slodowy, P.: Beyond Kac-Moody algebras, and inside. In: Lie Algebras and Related Topics (Windsor, Ont., 1984), pp. 361–371, CMS Conference Proceedings, vol. 5. American Mathematical Society, Providence, RI (1986)

[37]

Tan Y. Quantized GIM algebras and their Lusztig symmetries. J. Algebra. 2005, 289 214-276

[38]

Tan Y. Drinfeld–Jimbo coproduct of quantized GIM Lie algebras. J. Algebra. 2007, 313 617-641

[39]

Varagnolo M, Vasserot E. Schur duality in the toroidal setting. Commun. Math. Phys.. 1996, 182 469-484

[40]

Varagnolo M, Vasserot E. Double-loop algebras and the Fock space. Invent. Math.. 1998, 133 133-159

[41]

Xia L. Finite dimensional modules over quantum toroidal algebras. Front. Math. China. 2020, 15 593-600

Funding

National Natural Science Foundation of China(11931009)

Natural Sciences and Engineering Research Council of Canada(11531004)

Simons Foundation(523868)

National Natural Science Foundation of China(11871249)

AI Summary AI Mindmap
PDF

234

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/