A marginalized zero-truncated Poisson regression model and its model averaging prediction

Yin Liu , Wenhui Li , Xinyu Zhang

Communications in Mathematics and Statistics ›› 2023, Vol. 13 ›› Issue (3) : 527 -570.

PDF
Communications in Mathematics and Statistics ›› 2023, Vol. 13 ›› Issue (3) : 527 -570. DOI: 10.1007/s40304-022-00312-8
Article

A marginalized zero-truncated Poisson regression model and its model averaging prediction

Author information +
History +
PDF

Abstract

Counting data without zero category often occurs in many fields, such as social studies, clinical trials and economic phenomenon analyses. Researchers usually show interest in describing the characteristics of the observed counts and the Poisson distribution is often preferred to model the counted data. Nevertheless, making marginal inference on the population mean is a challenging job when missing zero class occurs and the Poisson mean is considered as an alternative. In this paper, based on a so-called marginalized zero-truncated Poisson (ZTP) regression model, a novel SR-based EM-FS algorithm is proposed to facilitate parameter estimation. To improve the prediction accuracy, this paper proposes a zero-truncated Poisson model averaging prediction that selects the optimal weight combination by minimizing a Kullback–Leibler (KL) divergence criterion. It is shown that the weight criterion is approximately unbiased about the expected KL loss. We further prove that the proposed prediction is asymptotically optimal in the sense that the KL-type loss and prediction risk are asymptotically identical to those of the infeasible best possible averaged prediction. Simulations and two empirical data applications are conducted to illustrate the proposed method.

Keywords

Marginalized ZTP regression model / SR-based EM-FS algorithm / Frequentist model averaging / Weight choice criterion / Kullback–Leibler divergence

Cite this article

Download citation ▾
Yin Liu, Wenhui Li, Xinyu Zhang. A marginalized zero-truncated Poisson regression model and its model averaging prediction. Communications in Mathematics and Statistics, 2023, 13(3): 527-570 DOI:10.1007/s40304-022-00312-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

AndoT, LiK-C. A model-averaging approach for high-dimensional regression. J. Am. Stat. Assoc., 2014, 109505254-265.

[2]

BatesJM, GrangerCWJ. The combination of forecasts. J. Oper. Res. Soc., 1969, 204451-468.

[3]

BenechaHK, PreisserJS, DivarisK, HerringAH, DasK. Marginalized zero-inflated Poisson models with missing covariates. Biom. J., 2018, 604845-858.

[4]

BestDJ, RaynerJCW, ThasO. Goodness of fit for the zero-truncated Poisson distribution. J. Stat. Comput. Simul., 2007, 777585-591.

[5]

BöhningD, SuppawattanabodeeB, KusolvisitkulW, ViwatwongkasemC. Estimating the number of drug users in Bangkok 2001: a capture-recapture approach using repeated entries in one list. Eur. J. Epidemiol., 2004, 19121075-1083.

[6]

BöhningD, van der HeijdenPGM. A covariate adjustment for zero-truncated approaches to estimating the size of hidden and elusive populations. Ann. Appl. Stat., 2009, 32595-610.

[7]

ConsulPCGeneralized Poisson Distributions, 1989New YorkMarcel Dekker

[8]

ConsulPC, JainGC. A generalization of the Poisson distribution. Technometrics, 1973, 154791-799.

[9]

Cox, C.: Delta method. In: Encyclopedia of Biostatistics. John Wiley & Sons, Ltd, UK (2005) https://doi.org/10.1002/0470011815.b2a15029

[10]

DavidFN, JohnsonNL. The truncated Poisson. Biometrics, 1952, 84275-285.

[11]

Dutang, C., Charpentier, A.: CASdatasets: Insurance datasets. http://cas.uqam.ca/ (2020)

[12]

FamoyeF, PreisserJS. Marginalized zero-inflated generalized Poisson regression. J. Appl. Stat., 2018, 4571247-1259.

[13]

FangF, LiJ, XiaX. Semiparametric model averaging prediction for dichotomous response. J. Econom., 2020.

[14]

FlynnCJ, HurvichCM, SimonoffJS. Efficiency for regularization parameter selection in penalized likelihood estimation of misspecified models. J. Am. Stat. Assoc., 2013, 1085031031-1043.

[15]

GroggerJT, CarsonRT. Models for truncated counts. J. Appl. Econ., 1991, 63225-238.

[16]

HansenBE. Least squares model averaging. Econometrica, 2007, 7541175-1189.

[17]

InanG, PreisserJ, DasK. A score test for testing a marginalized zero-inflated Poisson regression model against a marginalized zero-inflated negative binomial regression model. J. Agric. Biol. Environ. Stat., 2018, 231113-128.

[18]

Johnson, N.L., Kotz, S.: Distributions in Statistics: Discrete Distributions. Wiley, New York (1969) f

[19]

LeungG, BarronAR. Information theory and mixing least-squares regressions. IEEE Trans. Inf. Theory, 2006, 5283396-3410.

[20]

LiJ, LvJ, WanATK, LiaoJ. Adaboost semiparametric model averaging prediction for multiple categories. J. Am. Stat. Assoc., 2020.

[21]

LiJ, XiaX, WongWK, NottD. Varying-coefficient semiparametric model averaging prediction. Biometrics, 2018, 7441417-1426.

[22]

LiuC-A. Distribution theory of the least squares averaging estimator. J. Econom., 2015, 1861142-159.

[23]

LiuC-A, KuoB-S. Model averaging in predictive regressions. Econom. J., 2016, 192203-231.

[24]

LiuQ, OkuiR, YoshimuraA. Generalized least squares model averaging. Econom. Rev., 2016, 358–101692-1752.

[25]

Liu, X., Saat, M., Qin, X., Barkan, C.: Analysis of U.S. freight-train derailment severity using zero-truncated negative binomial regression and quantile regression. Accid. Anal. Prev. 59, 87–93 (2013). https://doi.org/10.1016/j.aap.2013.04.039

[26]

LvJ, LiuJS. Model selection principles in misspecified models. J. Roy. Stat. Soc. Ser. B, 2014, 761141-167.

[27]

LongDL, PreisserJS, HerringAH, GolinCE. A marginalized zero-inflated Poisson regression model with random effects. J. Roy. Stat. Soc. Ser. C, 2015, 645815-830.

[28]

Longford, N.T.: Model selection and efficiency is ‘Which model...?’ the right question? J. Roy. Stat. Soc. Ser. A 168(3), 469–472 (2005)

[29]

MengX-L. The EM algorithm and medical studies: a historical linik. Stat. Methods Med. Res., 1997, 613-23.

[30]

MillerAJSubset Selection in Regression, 20022LondonChapman & Hall.

[31]

OehlertGW. A note on the delta method. Am. Stat., 1992, 46127-29.

[32]

OhMM, KimSS, ChoiY. Analyses of determinants of hiking tourism demands on the Jeju Olle hiking trail using zero-truncated negative binomial regression analysis. Tour. Econ., 2020, 2681327-1343.

[33]

Preisser, J.S., Das, K., Long, D.L., Stamm, J.W.: A marginalized zero-inflated negative binomial regression model with overall exposure effects. The University of North Carolina at Chapel Hill Department of Biostatistics Technical Report Series (2014). http://biostats.bepress.com/uncbiostat/art43

[34]

Qiu, Y., Wang, Z., Xie, T., Zhang, X.: Forecasting bitcoin realized volatility by exploiting measurement error under model uncertainty. J. Empir. Finance 62(C), 179–201 (2021). https://doi.org/10.1016/j.jempfin.2021.03

[35]

RiderPR. Truncated binomial and negative binomial distributions. J. Am. Stat. Assoc., 1955, 50271877-883.

[36]

ShanmugamR. An intervened Poisson distribution and its medical application. Biometrics, 1985, 4141025-1029.

[37]

TianG-L, DingX, LiuY, TangM-L. Some new statistical methods for a class of zero-truncated discrete distributions with applications. Comput. Stat., 2019, 3431393-1426.

[38]

van der HeijdenPG, BustamiR, CruyffMJ, EngbersenG, van HouwelingenHC. Point and interval estimation of the population size using the truncated Poisson regression model. Stat. Modell., 2003, 34305-322.

[39]

WanAT, ZhangX, ZouG. Least squares model averaging by Mallows criterion. J. Econom., 2010, 1562277-283.

[40]

WhiteH. Maximum likelihood estimation of misspecified models. Econometrica, 1982, 5011-25.

[41]

XieT. Prediction model averaging estimator. Econ. Lett., 2015, 131: 5-8.

[42]

XieT. Heteroscedasticity-robust model screening: a useful toolkit for model averaging in big data analytics. Econ. Lett., 2017, 151: 119-122.

[43]

XieT, AickinM. A truncated Poisson regression model with applications to occurrence of adenomatous polyps. Stat. Med., 1997, 16161845-1857.

[44]

YuanZ, YangY. Combining linear regression models. J. Am. Stat. Assoc., 2005, 1004721202-1214.

[45]

ZhangX. A new study on asymptotic optimality of least squares model averaging. Econ. Theory, 2021, 372388-407.

[46]

ZhangX, LuZ, ZouG. Adaptively combined forecasting for discrete response time series. J. Econom., 2013, 176180-91.

[47]

ZhangX, WanATK, ZhouSZ. Focused information criteria, model selection, and model averaging in a Tobit model with a nonzero threshold. J. Bus. Econ. Stat., 2012, 301132-142.

[48]

ZhangX, YuD, ZouG, LiangH. Optimal model averaging estimation for generalized linear models and generalized linear mixed-effects models. J. Am. Stat. Assoc., 2016, 1115161775-1790.

[49]

ZhangX, ZhengY, WangS. A demand forecasting method based on stochastic frontier analysis and model average: an application in air travel demand forecasting. J. Syst. Sci. Complex., 2019, 322615-633.

[50]

ZhangX, ZouG. Model averaging method and its application in forecast. Stat. Res., 2011, 6: 97-102

[51]

ZhangX, ZouG, CarrollRJ. Model averaging based on Kullback-Leibler distance. Stat. Sin., 2015, 25: 1583-1598.

[52]

ZhangX, ZouG, LiangH, CarrollRJ. Parsimonious model averaging with a diverging number of parameters. J. Am. Stat. Assoc., 2020, 115530972-984.

[53]

ZhaoS, MaY, WanATK, ZhangX, WangS. Model averaging in a multiplicative heteroscedastic model. Econom. Rev., 2020, 39101100-1124.

[54]

ZouJ, WangW, ZhangX, ZouG. Optimal model averaging for divergent-dimensional Poisson regressions. Econom. Rev., 2022.

[55]

ZhuR, WanATK, ZhangX, ZouG. A Mallows-type model averaging estimator for the varying-coefficient partially linear model. J. Am. Stat. Assoc., 2019, 114526882-892.

[56]

ZuurAF, IenoEN, WalkerNJ, SavelievAA, SmithGMMixed Effects Models and Extensions in Ecology with R, 2009New YorkSpringer.

Funding

National Natural Science Foundation of China(61773401)

National Natural Science Foundation of China(11688101)

RIGHTS & PERMISSIONS

School of Mathematical Sciences, University of Science and Technology of China and Springer-Verlag GmbH Germany, part of Springer Nature

AI Summary AI Mindmap
PDF

234

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/