Cauchy-Stieltjes Kernel Families and Free Multiplicative Convolution

Raouf Fakhfakh , Abdelhamid Hassairi

Communications in Mathematics and Statistics ›› 2024, Vol. 12 ›› Issue (4) : 679 -694.

PDF
Communications in Mathematics and Statistics ›› 2024, Vol. 12 ›› Issue (4) : 679 -694. DOI: 10.1007/s40304-022-00311-9
Article

Cauchy-Stieltjes Kernel Families and Free Multiplicative Convolution

Author information +
History +
PDF

Abstract

In this paper, we determine the effect of the free multiplicative convolution on the pseudo-variance function of a Cauchy-Stieltjes kernel family. We then use the machinery of variance functions to establish some limit theorems related to this type of convolution and involving the free additive convolution and the Boolean additive convolution.

Keywords

Variance function / Cauchy kernel / Free multiplicative convolution / S-transform

Cite this article

Download citation ▾
Raouf Fakhfakh, Abdelhamid Hassairi. Cauchy-Stieltjes Kernel Families and Free Multiplicative Convolution. Communications in Mathematics and Statistics, 2024, 12(4): 679-694 DOI:10.1007/s40304-022-00311-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Anshelevich M, Wang J-C, Zhong P. Local limit theorems for multiplicative free convolutions. J. Funct. Anal, 2014, 267(9): 3469-3499

[2]

Belinschi ST, Nica A. On a remarkable semigroup of homomorphisms with respect to free multiplicative convolution. Indiana Univ. Math. J., 2008, 57(4): 1679-1713

[3]

Bercovici, H.: On Boolean convolutions. In: Operator Theory 20, Volume 6 of Theta Ser. Adv. Math., pp. 7–13. Theta, Bucharest (2006)

[4]

Bryc, W.: Free exponential families as kernel families. Demonstr. Math., XLII(3):657–672 (2009). arXiv:math/0601273

[5]

Bryc W, Hassairi A. One-sided Cauchy-Stieltjes kernel families. J. Theor. Probab., 2011, 24(2): 577-594 arXiv:0906.4073

[6]

Bryc, W., Ismail, M.: Approximation operators, exponential, and $q$-exponential families. Preprint (2005). arXiv:math/0512224

[7]

Bryc W, Fakhfakh R, Hassairi A. On Cauchy-Stieltjes kernel families. J. Multivar. Anal., 2014, 124: 295-312

[8]

Bryc W, Fakhfakh R, Mlotkowski W. Cauchy-Stieltjes families with polynomial variance functions and generalized orthogonality. Probab. Math. Stat., 2019, 39(2): 237-258

[9]

Bercovici H, Voiculescu D. Free convolution of measures with unbounded support. Indiana Univ. Math. J., 1993, 42(3): 733-773

[10]

Fakhfakh R. Characterization of quadratic Cauchy-Stieltjes Kernel families based on the orthogonality of polynomials. J. Math. Anal. Appl., 2018, 459: 577-589

[11]

Fakhfakh R. The mean of the reciprocal in a Cauchy-Stieltjes family. Stat. Probab. Lett., 2017, 129: 1-11

[12]

Fakhfakh R. Variance function of Boolean additive convolution. Stat. Probab. lett., 2020, 163: 108777

[13]

Haagerup U., Möller S.: The law of large numbers for the free multiplicative convolution. In: Operator Algebra and Dynamics. Springer Proceedings in Mathematics and Statistics, vol. 58. Springer, Berlin, Heidelberg

[14]

Letac G, Mora M. Natural real exponential families with cubic variance functions. Ann. Stat., 1990, 18: 1-37

[15]

Morris CN. Natural exponentials families with quadratic variance function. Ann. Stat., 1982, 10: 65-80

[16]

Młotkowski W. Fuss-Catalan numbers in noncommutative probability. Doc. Math., 2010, 15: 939-955

[17]

Sakuma Noriyoshi, Yoshida Hiroaki. New limit theorems related to free multiplicative convolution. Stud. Math., 2013, 214: 251-264

[18]

Octavio A, Takahiro H. Semigroups related to additive and multiplicative, free and Boolean convolutions. Stud. Math., 2011

[19]

Speicher R, Woroudi R. Boolean convolution. Fields Inst. Commun., 1997, 12: 267-279

[20]

Serban TB, Alexandru N. On a remarkable semigroup of homomorphisms with respect to free multiplicative convolution. Indiana Univ. Math. J., 2008, 57(4): 1679-1713

[21]

Wesolowski, J.: Kernels families. Unpublished manuscript (1999)

AI Summary AI Mindmap
PDF

175

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/