Non-associative Categories of Octonionic Bimodules

Qinghai Huo , Guangbin Ren

Communications in Mathematics and Statistics ›› 2023, Vol. 13 ›› Issue (2) : 303 -369.

PDF
Communications in Mathematics and Statistics ›› 2023, Vol. 13 ›› Issue (2) : 303 -369. DOI: 10.1007/s40304-022-00310-w
Article

Non-associative Categories of Octonionic Bimodules

Author information +
History +
PDF

Abstract

Category is put to work in the non-associative realm in the article. We focus on a typical example of non-associative category. Its objects are octonionic bimodules, morphisms are octonionic para-linear maps, and compositions are non-associative in general. The octonionic para-linear map is the main object of octonionic Hilbert theory because of the octonionic Riesz representation theorem. An octonionic para-linear map f is in general not octonionic linear since it subjects to the rule

Re(f(px)-pf(x))=0.
The composition should be modified as
fg(x):=f(g(x))-j=17ejRe(f(g(eix))-f(eig(x)))
so that it preserves the octonionic para-linearity. In this non-associative category, we introduce the Hom and Tensor functors which constitute an adjoint pair. We establish the Yoneda lemma in terms of the new notion of weak functor. To define the exactness in a non-associative category, we introduce the notion of the enveloping category via a universal property. This allows us to establish the exactness of the Hom functor and Tensor functor.

Keywords

Octonions / Category / Regular composition / Para-linearity / Adjoint functor theorem

Cite this article

Download citation ▾
Qinghai Huo, Guangbin Ren. Non-associative Categories of Octonionic Bimodules. Communications in Mathematics and Statistics, 2023, 13(2): 303-369 DOI:10.1007/s40304-022-00310-w

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

AwodeySCategory Theory, Volume 52 of Oxford Logic Guides, 20102OxfordOxford University Press

[2]

BaezJC. The octonions. Bull. Am. Math. Soc. (N.S.), 2002, 392145-205

[3]

Bryant, R.L.: Some remarks on G2\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$G_2$$\end{document}-structures. In: Proceedings of Gökova Geometry-Topology Conference 2005, pp. 75–109. Gökova Geometry/Topology Conference (GGT), Gökova (2006)

[4]

Colombo, F., Sabadini, I., Struppa, D.C.: Noncommutative Functional Calculus, volume 289 of Progress in Mathematics. Birkhäuser/Springer Basel AG, Basel (2011). Theory and applications of slice hyperholomorphic functions

[5]

ColomboF, SabadiniI, StruppaDC. A new functional calculus for noncommuting operators. J. Funct. Anal., 2008, 25482255-2274

[6]

GhiloniR, MorettiV, PerottiA. Continuous slice functional calculus in quaternionic Hilbert spaces. Rev. Math. Phys., 2013, 2541350006

[7]

GhiloniR, VincenzoR. Slice regular semigroups. Trans. Am. Math. Soc., 2018, 37074993-5032

[8]

GoldstineHH, HorwitzLP. Hilbert space with non-associative scalars. I. Math. Ann., 1964, 154: 1-27

[9]

GrigorianS. G2\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$G_2$$\end{document}-structures and octonion bundles. Adv. Math., 2017, 308: 142-207

[10]

Grigorian, S.: Smooth loops and loop bundles. arXiv:2008.08120 (2020)

[11]

Horwitz, L.P., Razon, A.: Tensor product of quaternion Hilbert modules. In: Classical and Quantum Systems (Goslar, 1991), pp. 266–268. World Sci. Publ., River Edge, NJ (1993)

[12]

HuoQ, LiY, RenG. Classification of Left Octonionic Modules. Adv. Appl. Clifford Algebras, 2021, 3111-14

[13]

Huo, Q., Ren, G.: Para-linearity as the nonassociative counterpart of linearity. arXiv:2107.08162 (2021)

[14]

JacobsonN. Structure of alternative and Jordan bimodules. Osaka Math. J., 1954, 6: 1-71

[15]

LeungNC. Riemannian geometry over different normed division algebras. J. Differ. Geom., 2002, 612289-333

[16]

LaneSMCategories for the Working Mathematician, Volume 5 of Graduate Texts in Mathematics, 19982New YorkSpringer

[17]

NgCK. On quaternionic functional analysis. Math. Proc. Camb. Philos. Soc., 2007, 1432391-406

[18]

RazonA, HorwitzLP. Projection operators and states in the tensor product of quaternion Hilbert modules. Acta Appl. Math., 1991, 242179-194

[19]

RazonA, HorwitzLP. Uniqueness of the scalar product in the tensor product of quaternion Hilbert modules. J. Math. Phys., 1992, 3393098-3104

[20]

RotmanJJAn Introduction to Homological Algebra. Universitext, 20092New YorkSpringer

[21]

SchaferRD. Representations of alternative algebras. Trans. Am. Math. Soc., 1952, 72: 1-17

[22]

ShestakovIP, TrushinaM. Irreducible bimodules over alternative algebras and superalgebras. Trans. Am. Math. Soc., 2016, 36874657-4684

[23]

SofferA, HorwitzLP. B*\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$B^{\ast } $$\end{document}-algebra representations in a quaternionic Hilbert module. J. Math. Phys., 1983, 24122780-2782

[24]

ViswanathK. Normal operations on quaternionic Hilbert spaces. Trans. Am. Math. Soc., 1971, 162: 337-350

[25]

WeibelCAAn Introduction to Homological Algebra, 1994CambridgeCambridge University Press38

[26]

ZhevlakovKA, SlinkoAM, ShestakovIP, ShirshovAIRings that are Nearly Associative. Pure and Applied Mathematics, 1982LondonAcademic Press104

Funding

National Natural Science Foundation of China(12171448)

RIGHTS & PERMISSIONS

School of Mathematical Sciences, University of Science and Technology of China and Springer-Verlag GmbH Germany, part of Springer Nature

AI Summary AI Mindmap
PDF

181

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/