$\sigma $-nilpotent group,$\Pi $-semiprojector,$\Pi $-covering subgroup system,$\sigma $-subnormal subgroup" /> $\sigma $-nilpotent group" /> $\Pi $-semiprojector" /> $\Pi $-covering subgroup system" /> $\sigma $-subnormal subgroup" /> $\sigma $-nilpotent group,$\Pi $-semiprojector,$\Pi $-covering subgroup system,$\sigma $-subnormal subgroup" />
A Generalization of $\sigma $-Permutability
Zhigang Wang , Jin Guo , Inna N. Safonova , Alexander N. Skiba
Communications in Mathematics and Statistics ›› 2022, Vol. 10 ›› Issue (3) : 565 -579.
A Generalization of $\sigma $-Permutability
Throughout this paper, all groups are finite and G always denotes a finite group; $\sigma $ is some partition of the set of all primes $\mathbb {P}$. A group G is said to be $\sigma $-primary if G is a $\pi $-group for some $\pi \in \sigma $. A $\pi $-semiprojector of G [
Finite group / $\sigma $-nilpotent group')">$\sigma $-nilpotent group / $\Pi $-semiprojector')">$\Pi $-semiprojector / $\Pi $-covering subgroup system')">$\Pi $-covering subgroup system / $\sigma $-subnormal subgroup')">$\sigma $-subnormal subgroup
/
| 〈 |
|
〉 |