$\sigma $-nilpotent group,$\Pi $-semiprojector,$\Pi $-covering subgroup system,$\sigma $-subnormal subgroup" /> $\sigma $-nilpotent group" /> $\Pi $-semiprojector" /> $\Pi $-covering subgroup system" /> $\sigma $-subnormal subgroup" /> $\sigma $-nilpotent group,$\Pi $-semiprojector,$\Pi $-covering subgroup system,$\sigma $-subnormal subgroup" />

A Generalization of $\sigma $-Permutability

Zhigang Wang , Jin Guo , Inna N. Safonova , Alexander N. Skiba

Communications in Mathematics and Statistics ›› 2022, Vol. 10 ›› Issue (3) : 565 -579.

PDF
Communications in Mathematics and Statistics ›› 2022, Vol. 10 ›› Issue (3) : 565 -579. DOI: 10.1007/s40304-022-00309-3
Article

A Generalization of $\sigma $-Permutability

Author information +
History +
PDF

Abstract

Throughout this paper, all groups are finite and G always denotes a finite group; $\sigma $ is some partition of the set of all primes $\mathbb {P}$. A group G is said to be $\sigma $-primary if G is a $\pi $-group for some $\pi \in \sigma $. A $\pi $-semiprojector of G [29] is a subgroup H of G such that HN/N is a maximal $\pi $-subgroup of G/N for all normal subgroups N of G. Let $\Pi \subseteq \sigma $. Then we say that $ {\mathcal {X}} = \{X_ {1}, \ldots , X_ {t} \} $ is a $ \Pi $-covering subgroup system for a subgroup H in G if all members of the set $ {\mathcal {X}} $ are $ \sigma $-primary subgroups of G and for each $ \pi \in \Pi $ with $\pi \cap \pi (H)\ne \emptyset $ there are an index i and a $ \pi $-semiprojector U of H such that $ U \le X_ {i}$. We study the embedding properties of subgroups H of G under the hypothesis that G has a $ \Pi $-covering subgroup system $ {\mathcal {X}}$ such that H permutes with $X^{x}$ for all $X\in {\mathcal {X}}$ and $x\in G$. Some well-known results are generalized.

Keywords

Finite group / $\sigma $-nilpotent group')">$\sigma $-nilpotent group / $\Pi $-semiprojector')">$\Pi $-semiprojector / $\Pi $-covering subgroup system')">$\Pi $-covering subgroup system / $\sigma $-subnormal subgroup')">$\sigma $-subnormal subgroup

Cite this article

Download citation ▾
Zhigang Wang, Jin Guo, Inna N. Safonova, Alexander N. Skiba. A Generalization of $\sigma $-Permutability. Communications in Mathematics and Statistics, 2022, 10(3): 565-579 DOI:10.1007/s40304-022-00309-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Al-Sharo KA, Skiba AN. On finite groups with -subnormal Schmidt subgroups. Comm. Algebra. 2017, 45 4158-4165

[2]

Al-Shomrani MM, Heliel AA, Ballester-Bolinches A. On -subnormal closure. Comm. Algebra. 2020, 48 8 3624-3627

[3]

Ballester-Bolinches A, Beidleman JC, Heineken H. Groups in which Sylow subgroups and subnormal subgroups permute, Special issue in honor of Reinhold Baer (1902–1979). Illinois J. Math.. 2003, 47 1–2 63-69

[4]

Ballester-Bolinches A, Esteban-Romero R, Asaad M. Products of Finite Groups. 2010 Berlin-New York: Walter de Gruyter

[5]

Ballester-Bolinches A, Ezquerro LM. Classes of Finite groups. 2006 Dordrecht: Springer

[6]

Ballester-Bolinches, A., Kamornikov, S.F., Pedraza-Aguilera, M.C., Perez-Calabuig, V.: On -subnormality criteria in finite -soluble groups, Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales. Serie A. Matematicas, 114(94) (2020), https://doi.org/10.1007/s13398-020-00824-4

[7]

Beidleman JC, Skiba AN. On $\tau _{ }$-quasinormal subgroups of finite groups. J. Group Theory. 2017, 20 5 955-964

[8]

Belonogov VA. Finite groups all of whose 2-maximal subgroups are $\pi $-decomposable. Proc. Steklov Inst. Math.. 2015, 289 26-41

[9]

Chunikhin SA. Subgroups of finite groups. 1964 Minsk: Nauka i Tehnika

[10]

Deskins WE. On quasinormal subgroups of finite groups. Math. Z.. 1963, 82 125-132

[11]

Doerk K, Hawkes T. Finite Soluble Groups. 1992 Berlin, New York: Walter de Gruyter

[12]

Guo W, Skiba A. On $\Pi $-quasinormal subgroups of finite groups. Monatsh. Math.. 2018, 185 443-453

[13]

Guo W, Skiba AN. Finite groups whose $n$-maximal subgroups are -subnormal. Sci. China Math.. 2019, 62 7 1355-1372

[14]

Guo W, Zhang C, Skiba AN, Sinitsa DA. On $H_{ }$-permutable embedded subgroups of finite groups. Rend. Sem. Math. Univ. Padova. 2018, 139 143-158

[15]

Heliel, A.E., Al-Shomrani, M., Ballester-Bolinches, A., On the -length of maximal subgroups of finite -soluble groups Mathematics, 8(12) (2020), 2165; https://doi.org/10.3390/math8122165

[16]

Hu B, Huang J, Skiba AN. On -quasinormal subgroups of finite groups. Bull. Austral. Math. Soc.. 2019, 99 3 413-420

[17]

Hu B, Huang J, Skiba AN. On strongly $\Pi $-permutable subgroups of a finite group. Sib. Math. J.. 2019, 60 720-726

[18]

Huppert B. Endliche Gruppen I. 1967 Berlin-Heidelberg-New York: Springer

[19]

Isaacs IM. Semipermutable $\pi $-subgroups. Arch. Math.. 2014, 102 1-6

[20]

Ito N, Szép J. Uber die Quasinormalteiler von endlichen Gruppen. Act. Sci. Math.. 1962, 23 168-170

[21]

Kamornikov SF, Tyutyanov VN. On -subnormal subgroups of finite groups. Sib. Math. J.. 2020, 61 2 337-343

[22]

Kamornikov SF, Tyutyanov VN. On -subnormal subgroups of finite $3^{^{\prime }}$-groups. Ukr. Math. J.. 2020, 72 6 935-941

[23]

Kegel OH. Sylow-Gruppen und Subnormalteiler endlicher Gruppen. Math. Z.. 1962, 78 205-221

[24]

Kovaleva VA. A criterion for a finite group to be -soluble. Comm. Algebra. 2018, 46 12 5410-5415

[25]

Murashka VI. On a generalization of the concept of $S$-permutable subgroup of a finite group. Acta Math. Hungar.. 2018, 155 2 221-227

[26]

Ore O. Contributions in the theory of groups of finite order. Duke Math. J.. 1939, 5 431-460

[27]

Sinitsa DA. Finite groups with $H_{ }$-permutable embedded subgroups. Adv. Group Theory Appl.. 2017, 4 29-40

[28]

Shemetkov LA. Formations of Finite Groups. 1978 Moscow: Nauka

[29]

Shemetkov LA, Skiba AN. Formations of Algebraic Systems. 1989 Moscow: Nauka

[30]

Skiba AN. On -properties of finite groups I. Problems Phys. Math. Technics. 2014, 21 4 89-96

[31]

Skiba AN. On -subnormal and -permutable subgroups of finite groups. J. Algebra. 2015, 436 1-16

[32]

Skiba AN. A generalization of a hall theorem. J. Algebra Appl.. 2016, 15 5 21-36

[33]

Skiba AN. On some results in the theory of finite partially soluble groups. Commun. Math. Stat.. 2016, 4 281-309

[34]

Skiba AN. Some characterizations of finite -soluble $P { }T$-groups. J. Algebra. 2018, 495 114-129

[35]

Skiba AN. On some classes of sublattices of the subgroup lattice. J. Belarusian State Univ. Math. Inform.. 2019, 3 35-47

[36]

Skiba AN. On sublattices of the subgroup lattice defined by formation Fitting sets. J. Algebra. 2020, 550 69-85

[37]

Yi X, Kamornikov SF. Finite groups with -subnormal Schmidt subgroups. J. Algebra. 2020, 560 15 181-191

Funding

NNSF of China(12171126)

NNSF of China(12171126)

AI Summary AI Mindmap
PDF

162

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/