$\sigma $-nilpotent group,$\Pi $-semiprojector,$\Pi $-covering subgroup system,$\sigma $-subnormal subgroup" /> $\sigma $-nilpotent group" /> $\Pi $-semiprojector" /> $\Pi $-covering subgroup system" /> $\sigma $-subnormal subgroup" /> $\sigma $-nilpotent group,$\Pi $-semiprojector,$\Pi $-covering subgroup system,$\sigma $-subnormal subgroup" />
A Generalization of $\sigma $-Permutability
Zhigang Wang , Jin Guo , Inna N. Safonova , Alexander N. Skiba
Communications in Mathematics and Statistics ›› 2022, Vol. 10 ›› Issue (3) : 565 -579.
A Generalization of $\sigma $-Permutability
Throughout this paper, all groups are finite and G always denotes a finite group; $\sigma $ is some partition of the set of all primes $\mathbb {P}$. A group G is said to be $\sigma $-primary if G is a $\pi $-group for some $\pi \in \sigma $. A $\pi $-semiprojector of G [
Finite group / $\sigma $-nilpotent group')">$\sigma $-nilpotent group / $\Pi $-semiprojector')">$\Pi $-semiprojector / $\Pi $-covering subgroup system')">$\Pi $-covering subgroup system / $\sigma $-subnormal subgroup')">$\sigma $-subnormal subgroup
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
Ballester-Bolinches, A., Kamornikov, S.F., Pedraza-Aguilera, M.C., Perez-Calabuig, V.: On -subnormality criteria in finite -soluble groups, Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales. Serie A. Matematicas, 114(94) (2020), https://doi.org/10.1007/s13398-020-00824-4 |
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
Heliel, A.E., Al-Shomrani, M., Ballester-Bolinches, A., On the -length of maximal subgroups of finite -soluble groups Mathematics, 8(12) (2020), 2165; https://doi.org/10.3390/math8122165 |
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
|
| [36] |
|
| [37] |
|
/
| 〈 |
|
〉 |