Isogeometric Analysis on Implicit Domains: Approximation, Stability and Error Estimates

Fang Deng , Tianhui Yang , Jingjing Liu , Jiansong Deng

Communications in Mathematics and Statistics ›› 2024, Vol. 12 ›› Issue (4) : 633 -658.

PDF
Communications in Mathematics and Statistics ›› 2024, Vol. 12 ›› Issue (4) : 633 -658. DOI: 10.1007/s40304-022-00307-5
Article

Isogeometric Analysis on Implicit Domains: Approximation, Stability and Error Estimates

Author information +
History +
PDF

Abstract

The gap between finite element analysis and computer-aided design derives the development of isogeometric analysis (IGA), which uses the same representation in the geometry and the analysis. However, the parameterization in IGA is non-trivial. Weighted extended B-splines (WEB) method replaces grid generation and parameterization with weight function construction (R-function or distance function). By using implicit spline representation, isogeometric analysis on implicit domains (IGAID) adopts the merits of the “isoparametric” in IGA and “weight function generation” in WEB. But the theoretical properties have not been fully studied yet. In this paper, we study the theoretical aspects of IGAID using tensor-product B-splines. Both the approximation and stability properties of IGAID are considered. By setting appropriate constraints on the weight function, we can derive the optimal approximation order and stability. Numerical examples show the effectiveness of the approach and validate the theoretical results.

Keywords

Isogeometric analysis / WEB method / Implicit domain / Weight function / Error estimates

Cite this article

Download citation ▾
Fang Deng, Tianhui Yang, Jingjing Liu, Jiansong Deng. Isogeometric Analysis on Implicit Domains: Approximation, Stability and Error Estimates. Communications in Mathematics and Statistics, 2024, 12(4): 633-658 DOI:10.1007/s40304-022-00307-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Auricchio F, Beirao da Veiga L, Buffa A, Lovadina C, Reali A, Sangalli G. A fully locking-free isogeometric approach for plane linear elasticity problems: a stream function formulation. Comput. Methods Appl. Mech. Eng., 2007, 197: 160-172

[2]

Bézier, P.: Numerical Control-Mathematics and Applications. Wiley (1972)

[3]

Brenner AC, Scott LR. The Mathematical Theory of Finite Element Methods, 2000 3 New York: Springer

[4]

Buffa A, Sangalli G, Vázquez R. Isogeometric analysis in electromagnetics: B-splines approximation. Comput. Methods Appl. Mech. Eng., 2010, 199: 1143-1152

[5]

Cottrell JA, Reali A, Bazilevs Y, Hughes TJR. Isogeometric analysis of structural vibrations. Comput. Methods Appl. Mech. Eng., 2006, 195: 5257-5296

[6]

Cottrell, J.A., Hughes, T.J.R., Bazilevs, Y.: Isogeometric Analysis: Toward Integration of CAD and FEA. Wiley (2009)

[7]

Deng F, Zeng C, Deng JS. Boundary-mapping parametrization in isogeometric analysis. Commun. Math. Stat., 2016, 4: 203-216

[8]

Höllig, K.: Finite Element Methods with B-Splines. Society for Industrial and Applied Mathematics (2003)

[9]

Höllig K, Reif U, Wipper J. Weighted extended B-spline approximation of Dirichlet problems. SIAM J. Numer. Anal., 2001, 39: 442-462

[10]

Hughes TJR, Cottrell JA, Bazilevs Y. Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Comput. Methods Appl. Mech. Eng., 2005, 194: 4135-4195

[11]

Li X, Sederberg TW. S-splines: a simple surface solution for IGA and CAD. Comput. Methods Appl. Mech. Eng., 2019, 350: 664-678

[12]

Liu Y, Song Y, Yang Z, Deng JS. Implicit surface reconstruction with total variation regularization. Comput. Aided Geom. Des., 2017, 52: 135-153

[13]

Liu, H., Yang, Y., Liu, Y., Fu, X.: Simultaneous interior and boundary optimization of volumetric domain parameterizations for IGA. In: Computer Aided Geometric Design, p. 79 (2020)

[14]

Martin T, Cohen E, Kirby M. Volumetric parametrization and trivariate b-spline fitting using harmonic functions. Comput. Aided Geom. Des., 2009, 26: 648-664

[15]

Martin T, Cohen E. Volumetric parametrization of complex objects by respecting multiple materials. Comput. Graph., 2010, 34: 187-197

[16]

Qarariyah A, Deng F, Yang T, Liu Y, Deng JS. Isogeometric analysis on implicit domains using weighted extended PHT-splines. J. Comput. Appl. Math., 2019, 350: 353-371

[17]

Rvachev VL, Sheiko TI. R-functions in boundary value problems in mechanics. Appl. Mech. Rev., 1995, 48: 151-188

[18]

Shapiro, V.: Theory of R-Functions and Applications: A Primer, Technicalreport CPA88-3. Cornell Programmable Automation, Sibley School of Mechanical Engineering, Ithaca, New York (1988)

[19]

Takacs T, Jüttler B. Existence of stiffness matrix integrals for singularly parameterized domains in isogeometric analysis. Comput. Methods Appl. Mech. Eng., 2011, 200: 3568-3582

[20]

Wei X, Li X, Qian K, Hughes TJR, Yongjie JZ, Hugo C. Analysis-suitable unstructured T-splines: Multiple extraordinary points per face. Comput. Methods Appl. Mech. Eng., 2022, 391: 114494

[21]

Xu J, Chen F, Deng JS. Two-dimensional domain decomposition based on skeleton computation for parametrization and isogeometric analysis. Comput. Methods Appl. Mech. Eng., 2015, 284: 541-555

[22]

Xu, G., Mourrain, B., Duvigneau, R., Galligo, A.: Variational harmonic method for parametrization of computational domain in 2D isogeometric analysis. In: 12th International Conference on Computer-Aided Design and Computer Graphics, pp. 223–228 (2011)

[23]

Xu G, Mourrain B, Duvigneau R, Galligo A. Parametrization of computational domain in isogeometric analysis: methods and comparison. Comput. Methods Appl. Mech. Eng., 2011, 200: 2021-2031

Funding

National Natural Science Foundation of China(12171453)

AI Summary AI Mindmap
PDF

159

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/