The kth Power Expectile Estimation and Testing

Fuming Lin , Yingying Jiang , Yong Zhou

Communications in Mathematics and Statistics ›› 2024, Vol. 12 ›› Issue (4) : 573 -615.

PDF
Communications in Mathematics and Statistics ›› 2024, Vol. 12 ›› Issue (4) : 573 -615. DOI: 10.1007/s40304-022-00302-w
Article

The kth Power Expectile Estimation and Testing

Author information +
History +
PDF

Abstract

This paper develops the theory of the kth power expectile estimation and considers its relevant hypothesis tests for coefficients of linear regression models. We prove that the asymptotic covariance matrix of kth power expectile regression converges to that of quantile regression as k converges to one and hence promise a moment estimator of asymptotic matrix of quantile regression. The kth power expectile regression is then utilized to test for homoskedasticity and conditional symmetry of the data. Detailed comparisons of the local power among the kth power expectile regression tests, the quantile regression test, and the expectile regression test have been provided. When the underlying distribution is not standard normal, results show that the optimal k are often larger than 1 and smaller than 2, which suggests the general kth power expectile regression is necessary. Finally, the methods are illustrated by a real example.

Keywords

The kth power expectiles / Expectiles / Quantiles / Testing for homoskedasticity / Testing for conditional symmetry / Estimating asymptotic matrix of quantile regression

Cite this article

Download citation ▾
Fuming Lin, Yingying Jiang, Yong Zhou. The kth Power Expectile Estimation and Testing. Communications in Mathematics and Statistics, 2024, 12(4): 573-615 DOI:10.1007/s40304-022-00302-w

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Andrews Donald W. K. Consistency in nonlinear econometric models: a generic uniform law of large numbers. Econometrica, 1987, 55: 1465-1471

[2]

Andriyana Y, Gijbels I, Verhasselt A. Quantile regression in varying-coefficient models: non-crossing quantile curves and heteroscedasticity. Stat. Pap., 2016, 57: 1-33

[3]

Anscombe FJ. Examination of residuals. Proc. Fifth Berkeley Symp., 1961, 1: 1-36

[4]

Antille A, Kersting G, Zucchini W. Testing Symmetry. J. Am. Stat. Assoc., 1982, 77: 639-646

[5]

Bates C, White H. A unified theory of consistent estimation for parametric models. Econom. Theor., 1985, 1: 151-178

[6]

Belloni A, Chernozhukov V. $l_{1}$-penalized quantile regression in high-dimensional sparse models. Ann. Stat., 2011, 39: 82-130

[7]

Boos DD. A test for asymmetry associated with the Hodges–Lehmann estimator. J. Amer. Stat. Assoc., 1982, 77: 647-651

[8]

Breusch TS, Pagan AR. A simple test for heteroscedasticity and random coefficient variation. Econometrica, 1979, 47: 1287-1294

[9]

Cabrera BL, Schulz F. Forecasting generalized quantiles of electricity demand: a functional data approach. J. Am. Stat. Assoc., 2017, 112: 127-136

[10]

Cai Z, Xiao Z. Semiparametric quantile regression estimation in dynamic models with partially varying coefficients. J. Econm., 2012, 167: 413-425

[11]

Cai Z, Xu X. Nonparametric quantile estimations for dynamic smooth coefficient models. J. Am. Stat. Assoc., 2008, 103: 1595-1608

[12]

Chen Z. Conditional $L_{p}$-quantiles and their application to testing of symmetry in non-parametric regression. Stat. Probab. Lett., 1996, 29: 107-115

[13]

Daouia A, Girard S, Stupfler G. Estimation of tail risk based on extreme expectiles. J. R. Stat. Soc. Ser. B, 2018, 80: 263-292

[14]

Daouia A, Girard S, Stupfler G. Extreme M-quantiles as risk measures: from $L^{1}$ to $L^{p}$ optimization. Bernoulli, 2019, 25: 264-309

[15]

Daouia A, Girard S, Stupfler G. Tail expectile process and risk assessment. Bernoulli, 2020, 26: 531-556

[16]

Efron B. Regression percentiles using asymmetric squared error loss. Stat. Sin., 1991, 1: 93-125

[17]

Engle RF, Manganelli S. CAViaR: conditional autoregressive value at risk by regression quantiles. J. Bus. Econ. Stat., 2004, 22: 367-381

[18]

Farooq M, Steinwart I. An SVM-like approach for expectile regression. Commun. Stat. Theor. Methods, 2017, 109: 159-181

[19]

Glesjer H. A new test for heteroscedasticity. J. Am. Stat. Assoc., 1969, 64: 316-323

[20]

Godfrey LG. Testing for multiplicative heteroskedasticity. J. Econm., 1978, 8: 227-236

[21]

Goldfeld SM, Quandt RE. Nonlinear Methods in Econometrics, 1972, Amsterdam: North Holland Publishing Co.

[22]

Granger, C.W.J., Sin, C.Y.: Estimating and forecasting quantiles with asymmetric least squares. Working Paper, University of California, San Diego (1997)

[23]

Gu Y, Zou H. High-dimensional generalizations of asymmetric least squares regression and their applications. Ann. Stat., 2016, 44: 2661-2694

[24]

Harvey AC. Estimating regression models with multiplicative heteroscedasticity. Econometrica, 1976, 44: 461-466

[25]

He X, Shao QM. On parameters of increasing dimenions. J. Multivar. Anal., 2000, 73: 120-135

[26]

Huber, P.J.: The behavior of maximum likelihood estimates under nonstandard conditions. In: Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics And Probability, vol. 1, pp. 221–233 (1967)

[27]

Jiang Y, Lin F, Zhou Y. The kth power expectile regression. Ann. Inst. Stat. Math., 2021, 73: 83-113

[28]

Kim MO. Quantile regression with varying coefficients. Ann. Stat., 2007, 35: 92-108

[29]

Koenker R Jr, Bassett G. Regression quantiles. Econometrica, 1978, 46: 33-50

[30]

Koenker R Jr, Bassett G. Robust tests for heteroscedasticity based on regression quantiles. Econometrica, 1982, 50: 43-61

[31]

Koenker R. Quantile Regression, No. 38, 2005, Cambridge: Cambridge University Press

[32]

Koenker R. Quantile Regression: 40 Years On. Annu. Rev. Econom., 2017, 9: 155-176

[33]

Kuan CM, Yeh JH, Hsu YC. Assessing value at risk with care, the conditional autoregressive expectile models. J. Econom., 2009, 150: 261-270

[34]

Mincer J. Investment in human capital and personal income distribution. J. Polit. Econ., 1958, 66: 281-302

[35]

Nelson DB. Conditional heteroskedasticity in asset returns: A new approach. Econometrica, 1991, 59: 347-370

[36]

Newey WK. Maximum likelihood specification testing and conditional moment tests. Econometrica, 1985, 53: 1047-1070

[37]

Newey WK, Powell JL. Asymmetric least squares estimation and testing. Econometrica, 1987, 55: 819-847

[38]

Prataviera F, Ortega EMM, Cordeiro GM, Cancho VG. The exponentiated power exponential semiparametric regression model. Commun. Stat. Simul. C., 2020

[39]

Prataviera F, Vasconcelos JCS, Cordeiro GM, Hashimoto EM, Ortega EMM. The exponentiated power exponential regression model with different regression structures: application in nursing data. J. Appl. Stat., 2019, 46: 1792-821

[40]

Taylor JW. Estimating value at risk and expected shortfall using expectiles. J. Financ. Econ., 2008, 6: 231-252

[41]

Tukey JW. Olkin I. A Survey of sampling from contaminated distributions. Contributions to Probability and Statistics, 1960, Stanford: Stanford University Press

[42]

Wang Z, Liu X, Tang W, Lin Y. Incorporating graphical structure of predictors in sparse quantile regression. J. Bus. Econ. Stat., 2020

[43]

White H. A heteroskedasticity-consistent covariance matrix estimator and a direct test for heteroskedasticity. Econometrica, 1980, 48: 817-838

[44]

Yao Q, Tong H. Asymmetric least squares regression estimation: a nonparametric approach. J. Nonparametr. Stat., 1996, 6: 273-292

[45]

Zhao J, Chen Y, Zhang Y. Expectile regression for analyzing heteroscedasticity in high dimension. Stat. Probab. Lett., 2018, 137: 304-311

Funding

the Opening Project of Sichuan Province University Key Laboratory of Bridge Non-destruction Detecting and Engineering Computing(2018QZJ01)

the talent introduction project of Sichuan University of Science & Engineering(2019RC10)

AI Summary AI Mindmap
PDF

251

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/