Dimensions of Tri-Quadratic

C 1
Spline Spaces over Hierarchical 3D T-meshes

Min Liu , Fang Deng , Jiansong Deng

Communications in Mathematics and Statistics ›› 2023, Vol. 13 ›› Issue (1) : 1 -57.

PDF
Communications in Mathematics and Statistics ›› 2023, Vol. 13 ›› Issue (1) : 1 -57. DOI: 10.1007/s40304-022-00296-5
Article

Dimensions of Tri-Quadratic

C 1
Spline Spaces over Hierarchical 3D T-meshes

Author information +
History +
PDF

Abstract

A 3D T-mesh is generally a cuboid grid which allows hanging vertices. Here, a hanging vertex is an interior vertex, but it is not a corner point of eight cells. Spline function spaces with high order smoothness over 3D T-meshes have great application prospect due to their local refinement and relatively low degrees of freedom, for example, 3D isogeometric analysis and implicit representation of surfaces. However, there are still no available dimension formulae of those kinds of spline spaces for application. In this paper, we explore the dimensions of trivariate quadratic spline spaces with

C 1
continuity over hierarchical 3D T-meshes. By using space embedding method, the problem is converted into a system of linear constraints, and then a lower bound on the dimension of the spline space over a hierarchical 3D T-mesh is provided. For a special type of hierarchical 3D T-meshes, the explicit dimension formula is obtained. In addition, a topological explanation of the dimension is given, which presents a way to construct basis functions.

Cite this article

Download citation ▾
Min Liu, Fang Deng, Jiansong Deng. Dimensions of Tri-Quadratic
C 1
Spline Spaces over Hierarchical 3D T-meshes. Communications in Mathematics and Statistics, 2023, 13(1): 1-57 DOI:10.1007/s40304-022-00296-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Anitescu C, Md Hossain N, Rabczuk Timon. Recovery-based error estimation and adaptivity using high-order splines over hierarchical T-meshes. Comput. Method. Appl. Mech. Eng., 2018, 328 638-662.

[2]

Bazilevs Y, Calo VM, Cottrell JA, Evans JA, Hughes TJR, Lipton S, Scott MA, Sederberg TW. Isogeometric analysis using T-splines. Comput. Method. Appl. Mech. Eng., 2010, 199(5–8): 229-263.

[3]

Berdinsky D, Min-jae O, Kim T-W, Mourrain B. On the problem of instability in the dimension of a spline space over a T-mesh. Comput. Graph., 2012, 36(5): 507-513.

[4]

Brenner, S., Scott, R.: The Mathematical Theory of Finite Element Methods. Springer Science & Business Media, December (2007)

[5]

Chao Z, Meng W, Fang D, Jiansong D. Dimensions of spline spaces over non-rectangular T-meshes. Adv. Comput. Math., 2016, 42(6): 1259-1286.

[6]

Cottrell, J.A., Hughes, T.J.R., Bazilevs, Y.: Isogeometric Analysis: Toward Integration of CAD and FEA. Wiley, August (2009)

[7]

Deng Fang. Bases of Biquadratic Polynomial Spline Spaces over Hierarchical T-Meshes. J. Comput. Math., 2017, 35(1): 91-120.

[8]

Deng J, Chen F, Feng Y. Dimensions of spline spaces over T-meshes. J. Comput. Appl. Math., 2006, 194(2): 267-283.

[9]

Deng J, Chen F, Jin L. Dimensions of biquadratic spline spaces over T-meshes. J. Comput. Appl. Math., 2013, 238 68-94.

[10]

Deng J, Chen F, Li X, Changqi H, Tong W, Yang Z, Feng Yuyu. Polynomial splines over hierarchical T-meshes. Graph. Model., 2008, 70(4): 76-86.

[11]

Dokken T, Lyche T, Pettersen KF. Polynomial splines over locally refined box-partitions. Comput. Aid. Geo. Design, 2013, 30(3): 331-356.

[12]

Escobar JM, Cascón JM, Rodríguez E, Montenegro R. A new approach to solid modeling with trivariate T-splines based on mesh optimization. Comput. Method. Appl. Mech. Eng., 2011, 200(45–46): 3210-3222.

[13]

Farin, G.E.: Curves and Surfaces for CAGD: A Practical Guide. Morgan Kaufmann Series in Computer Graphics and Geometric Modeling. Morgan Kaufmann, San Francisco, CA, 5th ed edition, (2001)

[14]

Forsey DR, Bartels RH. Hierarchical B-spline refinement. ACM SIGGRAPH Comput. Graph., 1988, 22(4): 205-212.

[15]

Giannelli C, Jüttler B. Bases and dimensions of bivariate hierarchical tensor-product splines. J. Comput. Appl. Math., 2013, 239 162-178.

[16]

Hliněný, P.: A Short Proof of Euler–Poincaré Formula. arXiv e-prints, page arXiv:1612.01271, December (2016)

[17]

Hughes TJR, Cottrell JA, Bazilevs Y. Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Comput. Method. Appl. Mech. Eng., 2005, 194(39–41): 4135-4195.

[18]

Li X, Chen F. On the instability in the dimension of splines spaces over T-meshes. Comput. Aid. Geo. Design, 2011, 28(7): 420-426.

[19]

Li X, Deng J. On the dimension of spline spaces over T-meshes with smoothing cofactor-conformality method. Comput. Aid. Geo. Design, 2016, 41 76-86.

[20]

Li, X., Deng, J., Chen, F.: Dimensions of Spline Spaces over 3D Hierarchical T-Meshes. J. Info., page 15, (2006)

[21]

Meng W, Deng J, Chen F. Dimension of spline spaces with highest order smoothness over hierarchical T-meshes. Comput. Aid. Geo. Design, 2013, 30(1): 20-34.

[22]

Mourrain B. On the dimension of spline spaces on planar T-meshes. Math. Comput., 2014, 83(286): 847-871.

[23]

Nguyen-Thanh N, Muthu J, Zhuang X, Rabczuk T. An adaptive three-dimensional RHT-splines formulation in linear elasto-statics and elasto-dynamics. Comput. Mech., 2014, 53(2): 369-385.

[24]

Schoenberg, I. J.: Contributions to the Problem of Approximation of Equidistant Data by Analytic Functions. In Carl de Boor, editor, I. J. Schoenberg Selected Papers, Contemporary Mathematicians, pages 3–57. Birkhäuser, Boston, MA, (1988)

[25]

Sederberg TW, Zheng J, Bakenov A, Nasri A. T-splines and T-NURCCs. ACM Trans. Graph. (TOG), 2003, 22(3): 477-484.

[26]

Wang J, Yang Z, Jin L, Deng J, Chen F. Parallel and adaptive surface reconstruction based on implicit PHT-splines. Comput. Aid. Geo. Design, 2011, 28(8): 463-474.

[27]

Wang, L.: Trivariate Polynomial Splines on 3D T-Meshes. Ph.D. Thesis, Vanderbilt University, (2012)

[28]

Zeng C, Deng F, Li X, Deng J. Dimensions of biquadratic and bicubic spline spaces over hierarchical T-meshes. J. Comput. Appl. Math., 2015, 287 162-178.

[29]

Zeng C, Deng J. On the dimension of trivariate spline spaces with the highest order smoothness on 3D T-meshes. Adv. Comput. Math., 2018, 44(2): 423-451.

Funding

National Natural Science Foundation of China(12171453)

RIGHTS & PERMISSIONS

School of Mathematical Sciences, University of Science and Technology of China and Springer-Verlag GmbH Germany, part of Springer Nature

AI Summary AI Mindmap
PDF

182

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/