Distance-Regular Graphs of Diameter 3 Without Triangles with $c_2=2$

A. A. Makhnev , Wenbin Guo , K. S. Efimov

Communications in Mathematics and Statistics ›› 2022, Vol. 10 ›› Issue (4) : 785 -792.

PDF
Communications in Mathematics and Statistics ›› 2022, Vol. 10 ›› Issue (4) : 785 -792. DOI: 10.1007/s40304-021-00281-4
Article

Distance-Regular Graphs of Diameter 3 Without Triangles with $c_2=2$

Author information +
History +
PDF

Abstract

Earlier it was proved that some distance-regular graphs of diameter 3 with $c_2=2$ do not exist. Distance-regular graph $\varGamma $ with intersection array $\{17,16,10;1,2,8\}$ has strongly regular graph $\varGamma _{3}$ (pseudo-geometric graph for the net $pG_9(17,9)$). By symmetrizing the arrays of triple intersection numbers, it is proved that the distance-regular graphs with intersection arrays $\{17,16,10;1,2,8\}$ and $\{22,21,4;1,2,14\}$ do not exist.

Keywords

Distance-regular graph / Graph without triangles / Triple intersection numbers

Cite this article

Download citation ▾
A. A. Makhnev, Wenbin Guo, K. S. Efimov. Distance-Regular Graphs of Diameter 3 Without Triangles with $c_2=2$. Communications in Mathematics and Statistics, 2022, 10(4): 785-792 DOI:10.1007/s40304-021-00281-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

Funding

Российский Фонд Фундаментальных Исследований (РФФи)(20-51-53013)

National Natural Science Foundation of China(12171126)

AI Summary AI Mindmap
PDF

180

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/